849 research outputs found

    Derivation of a high-resolution CT-based, semi-automated radiographic score in tuberculosis and its relationship to bacillary load and antitubercular therapy

    Get PDF
    Efforts to curb the tuberculosis (TB) pandemic remain hindered by a lack of objective measures to quantify disease severity and track treatment success that are valid in both HIV-1-infected and -uninfected TB patients. Ralph et al. [1] developed a promising radiographic scoring system, with baseline scores being predictive of sputum smear conversion at 2 months, but it is reliant on skilled readers and has not been systematically validated in predominantly HIV-infected study populations with varying CD4 counts. Superior to conventional chest radiography, high-resolution computed tomography (HRCT) is a highly sensitive tool to track endobronchial TB disease extent [2]

    Erratum: Towards graded-index magnonics: Steering spin waves in magnonic networks [Phys. Rev. B 92, 020408(R) (2015)]

    Get PDF
    This is the final version of the article. Available from the American Physical Societ via the DOI in this record.This is the erratum to 'Towards graded-index magnonics: Steering spin waves in magnonic networks'. Physical Review B 92, 020408(R), 20 July 2015. DOI: https://doi.org/10.1103/PhysRevB.92.020408The article for which this is the erratum is in ORE: http://hdl.handle.net/10871/26167-The research leading to these results has received funding from the European Community's Seventh Framework Programme (FP7/2007-2013) under Grant Agreement No. 247556 (NoWaPhen), from the Engineering and Physical Sciences Research Council of the United Kingdom under Projects No. EP/L019876/1 and No. EP/L020696/1, from Russian Science Foundation (Project No. 14-19-00760), and the Scholarship of the President of Russian Federation (SP-313.2015.5)

    Exploiting Locally Imposed Anisotropies in (Ga,Mn)As: a Non-volatile Memory Device

    Full text link
    Progress in (Ga,Mn)As lithography has recently allowed us to realize structures where unique magnetic anisotropy properties can be imposed locally in various regions of a given device. We make use of this technology to fabricate a device in which we study transport through a constriction separating two regions whose magnetization direction differs by 90 degrees. We find that the resistance of the constriction depends on the flow of the magnetic field lines in the constriction region and demonstrate that such a structure constitutes a non-volatile memory device

    Toward Chirality‐Encoded Domain Wall Logic

    Get PDF
    Nonvolatile logic networks based on spintronic and nanomagnetic technologies have the potential to create high‐speed, ultralow power computational architectures. This article explores the feasibility of “chirality‐encoded domain wall logic,” a nanomagnetic logic architecture where data are encoded by the chiral structures of mobile domain walls in networks of ferromagnetic nanowires and processed by the chiral structures' interactions with geometric features of the networks. High‐resolution magnetic imaging is used to test two critical functionalities: the inversion of domain wall chirality at tailored artificial defect sites (logical NOT gates) and the chirality‐selective output of domain walls from 2‐in‐1‐out nanowire junctions (common operation to AND/NAND/OR/NOR gates). The measurements demonstrate both operations can be performed to a good degree of fidelity even in the presence of complex magnetization dynamics that would normally be expected to destroy chirality‐encoded information. Together, these results represent a strong indication of the feasibility of devices where chiral magnetization textures are used to directly carry, rather than merely delineate, data

    Graded magnonic index and spin wave fano resonances in magnetic structures: Excite, direct, capture

    Get PDF
    This is the author accepted manuscript. The final version is available from Pan Stanford via the DOI in this record Starting from the general topic and fundamentals of magnonics, we discuss and provide demonstrations of exciting new physics and technological opportunities associated with the graded magnonic index and spin wave Fano resonances, highlighting them as the next big thing in magnonics research.Engineering and Physical Sciences Research Council (EPSRC)European Union Horizon 202

    Metabolic analysis of the interaction between plants and herbivores

    Get PDF
    Insect herbivores by necessity have to deal with a large arsenal of plant defence metabolites. The levels of defence compounds may be increased by insect damage. These induced plant responses may also affect the metabolism and performance of successive insect herbivores. As the chemical nature of induced responses is largely unknown, global metabolomic analyses are a valuable tool to gain more insight into the metabolites possibly involved in such interactions. This study analyzed the interaction between feral cabbage (Brassica oleracea) and small cabbage white caterpillars (Pieris rapae) and how previous attacks to the plant affect the caterpillar metabolism. Because plants may be induced by shoot and root herbivory, we compared shoot and root induction by treating the plants on either plant part with jasmonic acid. Extracts of the plants and the caterpillars were chemically analysed using Ultra Performance Liquid Chromatography/Time of Flight Mass Spectrometry (UPLCT/MS). The study revealed that the levels of three structurally related coumaroylquinic acids were elevated in plants treated on the shoot. The levels of these compounds in plants and caterpillars were highly correlated: these compounds were defined as the ‘metabolic interface’. The role of these metabolites could only be discovered using simultaneous analysis of the plant and caterpillar metabolomes. We conclude that a metabolomics approach is useful in discovering unexpected bioactive compounds involved in ecological interactions between plants and their herbivores and higher trophic levels.

    Transverse Domain Wall Profile for Spin Logic Applications

    Get PDF
    Domain wall (DW) based logic and memory devices require precise control and manipulation of DW in nanowire conduits. The topological defects of Transverse DWs (TDW) are of paramount importance as regards to the deterministic pinning and movement of DW within complex networks of conduits. In-situ control of the DW topological defects in nanowire conduits may pave the way for novel DW logic applications. In this work, we present a geometrical modulation along a nanowire conduit, which allows for the topological rectification/inversion of TDW in nanowires. This is achieved by exploiting the controlled relaxation of the TDW within an angled rectangle. Direct evidence of the logical operation is obtained via magnetic force microscopy measurement

    Deterministic control of magnetic vortex wall chirality by electric field

    Get PDF
    Concepts for information storage and logical processing based on magnetic domain walls have great potential for implementation in future information and communications technologies. To date, the need to apply power hungry magnetic fields or heat dissipating spin polarized currents to manipulate magnetic domain walls has limited the development of such technologies. The possibility of controlling magnetic domain walls using voltages offers an energy efficient route to overcome these limitations. Here we show that a voltage-induced uniaxial strain induces reversible deterministic switching of the chirality of a magnetic vortex wall. We discuss how this functionality will be applicable to schemes for information storage and logical processing, making a significant step towards the practical implementation of magnetic domain walls in energy efficient computing

    A fresh look at the evolution and diversification of photochemical reaction centers

    Get PDF
    In this review, I reexamine the origin and diversification of photochemical reaction centers based on the known phylogenetic relations of the core subunits, and with the aid of sequence and structural alignments. I show, for example, that the protein folds at the C-terminus of the D1 and D2 subunits of Photosystem II, which are essential for the coordination of the water-oxidizing complex, were already in place in the most ancestral Type II reaction center subunit. I then evaluate the evolution of reaction centers in the context of the rise and expansion of the different groups of bacteria based on recent large-scale phylogenetic analyses. I find that the Heliobacteriaceae family of Firmicutes appears to be the earliest branching of the known groups of phototrophic bacteria; however, the origin of photochemical reaction centers and chlorophyll synthesis cannot be placed in this group. Moreover, it becomes evident that the Acidobacteria and the Proteobacteria shared a more recent common phototrophic ancestor, and this is also likely for the Chloroflexi and the Cyanobacteria. Finally, I argue that the discrepancies among the phylogenies of the reaction center proteins, chlorophyll synthesis enzymes, and the species tree of bacteria are best explained if both types of photochemical reaction centers evolved before the diversification of the known phyla of phototrophic bacteria. The primordial phototrophic ancestor must have had both Type I and Type II reaction centers

    Resonant amplification of vortex-core oscillations by coherent magnetic-field pulses

    Get PDF
    Vortex structures in soft magnetic nanodisks are highly attractive due to their scientific beauty and potential technological applications. Here, we experimentally demonstrated the resonant amplification of vortex oscillations by application of simple coherent field pulses tuned to optimal width and time intervals. In order to investigate vortex excitations on the sub-ns time scale, we employed state-of-the-art time-resolved full-field soft X-ray microscopy of 70 ps temporal and 25 nm lateral resolution. We found that, due to the resonant enhancement of the vortex gyration motion, the signal input power can be significantly reduced to similar to 1 Oe in field strength, while increasing signal gains, by increasing the number of the optimal field pulses. We identified the origin of this behavior as the forced resonant amplification of vortex gyration. This work represents an important milestone towards the potential implementation of vortex oscillations in future magnetic vortex devices.open4
    corecore