702 research outputs found

    Genetic differentiation of Glossina morsitans centralis populations

    Get PDF
    Variation at mitochondrial and microsatellite loci was used to study the breeding and dispersal structure of Glossina morsitans centralis, in six natural populations from Botswana, the Caprivi Strip (Namibia), Zambia, and in a laboratory culture derived from Singida, Tanzania. Only seven mitochondrial haplotypes were found. Mean diversity averaged over the six natural populations was 0.216 ± 0.085. The fixation index FST = 0.866 indicated a high degree of genetic differentiation among populations. Fifty-three alleles were detected among six microsatellite loci and six natural populations. Mean microsatellite diversity was 0.702 ± 0.091. Depending on the estimating model used, fixation indices varied from 0.15 to 0.225 confirming that G. m. centralis populations are strongly subdivided. For all FST estimates, positive correlations were detected between pair-wise genetic distance measures and geographical distances. The difference in fixation indices estimated from mitochondrial or nuclear loci was explained by the greater sensitivity of mitochondrial genomes to genetic drift. Population differentiation can be explained by genetic drift and the subsequent recovery of extant populations from small, discontinuous populations. These data confirm genetically the collapse and retreat of G. m. centralis populations caused by the rinderpest epizootic of the late 19th and early 20th centuries

    A four‐component classification of uncertainties in biological invasions: implications for management

    Get PDF
    Although uncertainty is an integral part of any science, it raises doubts in public perception about scientific evidence, is exploited by denialists, and therefore potentially hinders the implementation of management actions. As a relatively young field of study, invasion science contains many uncertainties. This may explain why, despite international policies aimed at mitigating biological invasions, the implementation of national- and regional-scale measures to prevent or control alien species has done little to slow the increase in extent of invasions and the magnitude of impacts. Uncertainty is therefore a critical aspect of invasion science that should be addressed to enable the field to progress further. To improve how uncertainties in invasion science are captured and characterized, we propose a framework, which is also applicable to other applied research fields such as climate and conservation science, divided into four components: the need (1) to clearly circumscribe the phenomenon, (2) to measure and provide evidence for the phenomenon (i.e., confirmation), (3) to understand the mechanisms that cause the phenomenon, and (4) to understand the mechanisms through which the phenomenon results in consequences. We link these issues to three major types of uncertainty: linguistic, psychological, and epistemic. The application of this framework shows that the four components tend to be characterized by different types of uncertainty in invasion science.We explain how these uncertainties can be detrimental to the implementation of management measures and propose ways to reduce them. Since biological invasions are increasingly tightly embedded in complex socio-ecological systems, many problems associated with these uncertainties have convoluted solutions. They demand the consensus of many stakeholders to define and frame the dimensions of the phenomenon, and to decide on appropriate actions. While many of the uncertainties cannot be eliminated completely, we believe that using this framework to explicitly identify and communicate them will help to improve collaboration between researchers and managers, increase scientific, political, and public support for invasion research, and provide a stronger foundation for sustainable management strategies

    The star-forming content of the W3 giant molecular cloud

    Full text link
    We have surveyed a ~0.9-square-degree area of the W3 giant molecular cloud and star-forming region in the 850-micron continuum, using the SCUBA bolometer array on the James Clerk Maxwell Telescope. A complete sample of 316 dense clumps was detected with a mass range from around 13 to 2500 Msun. Part of the W3 GMC is subject to an interaction with the HII region and fast stellar winds generated by the nearby W4 OB association. We find that the fraction of total gas mass in dense, 850-micron traced structures is significantly altered by this interaction, being around 5% to 13% in the undisturbed cloud but ~25 - 37% in the feedback-affected region. The mass distribution in the detected clump sample depends somewhat on assumptions of dust temperature and is not a simple, single power law but contains significant structure at intermediate masses. This structure is likely to be due to crowding of sources near or below the spatial resolution of the observations. There is little evidence of any difference between the index of the high-mass end of the clump mass function in the compressed region and in the unaffected cloud. The consequences of these results are discussed in terms of current models of triggered star formation.Comment: 13 pages, 8 figures, 1 table (full source table available on request). Accepted for publication in Monthly Notices of the Royal Astronomical Society (Main Journal

    Reflectionless tunneling in ballistic normal-metal--superconductor junctions

    Full text link
    We investigate the phenomenon of reflectionless tunneling in ballistic normal-metal--superconductor (NS) structures, using a semiclassical formalism. It is shown that applied magnetic field and superconducting phase difference both impair the constructive interference leading to this effect, but in a qualitatively different way. This is manifested both in the conductance and in the shot noise properties of the system considered. Unlike diffusive systems, the features of the conductance are sharp, and enable fine spatial control of the current, as well as single channel manipulations. We discuss the possibility of conducting experiments in ballistic semiconductor-superconductor structures with smooth interfaces and some of the phenomena, specific to such structures, that could be measured. A general criterion for the barrier at NS interfaces, though large, to be effectively transparent to pair current is obtained.Comment: published versio

    Risk of Injury in Royal Air Force Training: Does Sex Really Matter?

    Get PDF
    IntroductionMusculoskeletal injuries are common during military and other occupational physical training programs. Employers have a duty of care to reduce employees’ injury risk, where females tend to be at greater risk than males. However, quantification of principle co-factors influencing the sex–injury association, and their relative importance, remain poorly defined. Injury risk co-factors were investigated during Royal Air Force (RAF) recruit training to inform the strategic prioritization of mitigation strategies.Material and MethodsA cohort of 1,193 (males n = 990 (83%); females n = 203 (17%)) recruits, undertaking Phase-1 military training, were prospectively monitored for injury occurrence. The primary independent variable was sex, and potential confounders (fitness, smoking, anthropometric measures, education attainment) were assessed pre-training. Generalized linear models were used to assess associations between sex and injury.ResultsIn total, 31% of recruits (28% males; 49% females) presented at least one injury during training. Females had a two-fold greater unadjusted risk of injury during training than males (RR = 1.77; 95% CI 1.49–2.10). After anthropometric, lifestyle and education measures were included in the model, the excess risk decreased by 34%, but the associations continued to be statistically significant. In contrast, when aerobic fitness was adjusted, an inverse association was identified; the injury risk was 40% lower in females compared with males (RR = 0.59; 95% CI: 0.42–0.83).ConclusionsPhysical fitness was the most important confounder with respect to differences in males’ and females’ injury risk, rather than sex alone. Mitigation to reduce this risk should, therefore, focus upon physical training, complemented by healthy lifestyle interventions

    The RMS Survey: Mid-Infrared Observations of Candidate Massive YSOs in the Southern Hemisphere

    Full text link
    Abridged abstract: The Red MSX Source (RMS) survey is an ongoing effort to return a large, well-selected sample of massive young stellar objects (MYSOs) within our Galaxy. A series of ground-based follow-up observations are being undertaken in order to remove contaminant objects from our list of 2000 candidates, and to begin characterising these MYSOs. As a part of these follow-up observations, high resolution (~1") mid-IR imaging aids the identification of contaminant objects which are resolved (UCHII regions, PN) as opposed to those which are unresolved (YSOs, evolved stars) as well as identifying YSOs near UCHII regions and other multiple sources. We present 10.4 micron imaging observations for 346 candidate MYSOs in the RMS survey in the Southern Hemisphere, primarily outside the region covered by the GLIMPSE Spitzer Legacy Survey. These were obtained using TIMMI2 on the ESO 3.6m telescope in La Silla, Chile. Our photometric accuracy is of order 0.05Jy, and our astrometric accuracy is 0.8", which is an improvement over the nominal 2" accuracy of the MSX PSC.Comment: 9 page paper accepted to A&A. Online data for table 2 and figure 1 will be available in the published online version of this paper via A&A. The paper contains 7 figures and 3 table
    • 

    corecore