130 research outputs found

    Late gadolinium uptake demonstrated with magnetic resonance in patients where automated PERFIT analysis of myocardial SPECT suggests irreversible perfusion defect

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Myocardial perfusion single photon emission computed tomography (MPS) is frequently used as the reference method for the determination of myocardial infarct size. PERFIT<sup>® </sup>is a software utilizing a three-dimensional gender specific, averaged heart model for the automatic evaluation of myocardial perfusion. The purpose of this study was to compare the perfusion defect size on MPS, assessed with PERFIT, with the hyperenhanced volume assessed by late gadolinium enhancement magnetic resonance imaging (LGE) and to relate their effect on the wall motion score index (WMSI) assessed with cine magnetic resonance imaging (cine-MRI) and echocardiography (echo).</p> <p>Methods</p> <p>LGE was performed in 40 patients where clinical MPS showed an irreversible uptake reduction suggesting a myocardial scar. Infarct volume, extent and major coronary supply were compared between MPS and LGE as well as the relationship between infarct size from both methods and WMSI.</p> <p>Results</p> <p>MPS showed a slightly larger infarct volume than LGE (MPS 29.6 ± 23.2 ml, LGE 22.1 ± 16.9 ml, p = 0.01), while no significant difference was found in infarct extent (MPS 11.7 ± 9.4%, LGE 13.0 ± 9.6%). The correlation coefficients between methods in respect to infarct size and infarct extent were 0.71 and 0.63 respectively. WMSI determined with cine-MRI correlated moderately with infarct volume and infarct extent (cine-MRI vs MPS volume r = 0.71, extent r = 0.71, cine-MRI vs LGE volume r = 0.62, extent r = 0.60). Similar results were achieved when wall motion was determined with echo. Both MPS and LGE showed the same major coronary supply to the infarct area in a majority of patients, Kappa = 0.84.</p> <p>Conclusion</p> <p>MPS and LGE agree moderately in the determination of infarct size in both absolute and relative terms, although infarct volume is slightly larger with MPS. The correlation between WMSI and infarct size is moderate.</p

    Temporary epicardial cardiac resynchronisation versus conventional right ventricular pacing after cardiac surgery: study protocol for a randomised control trial

    Get PDF
    Background: Heart failure patients with stable angina, acute coronary syndromes and valvular heart disease may benefit from revascularisation and/or valve surgery. However, the mortality rate is increased- 5-30%. Biventricular pacing using temporary epicardial wires after surgery is a potential mechanism to improve cardiac function and clinical endpoints. Method/design: A multi-centred, prospective, randomised, single-blinded, intervention-control trial of temporary biventricular pacing versus standard pacing. Patients with ischaemic cardiomyopathy, valvular heart disease or both, an ejection fraction ≤ 35% and a conventional indication for cardiac surgery will be recruited from 2 cardiac centres. Baseline investigations will include: an electrocardiogram to confirm sinus rhythm and measure QRS duration; echocardiogram to evaluate left ventricular function and markers of mechanical dyssynchrony; dobutamine echocardiogram for viability and blood tests for renal function and biomarkers of myocardial injury- troponin T and brain naturetic peptide. Blood tests will be repeated at 18, 48 and 72 hours. The principal exclusions will be subjects with permanent atrial arrhythmias, permanent pacemakers, infective endocarditis or end-stage renal disease. After surgery, temporary pacing wires will be attached to the postero-lateral wall of the left ventricle, the right atrium and right ventricle and connected to a triple chamber temporary pacemaker. Subjects will be randomised to receive either temporary biventricular pacing or standard pacing (atrial inhibited pacing or atrial-synchronous right ventricular pacing) for 48 hours. The primary endpoint will be the duration of level 3 care. In brief, this is the requirement for invasive ventilation, multi-organ support or more than one inotrope/vasoconstrictor. Haemodynamic studies will be performed at baseline, 6, 18 and 24 hours after surgery using a pulmonary arterial catheter. Measurements will be taken in the following pacing modes: atrial inhibited; right ventricular only; atrial synchronous-right ventricular; atrial synchronous-left ventricular and biventricular pacing. Optimisation of the atrioventricular and interventricular delay will be performed in the biventricular pacing group at 18 hours. The effect of biventricular pacing on myocardial injury, post operative arrhythmias and renal function will also be quantified

    Digital Cranial Endocast of Hyopsodus (Mammalia, “Condylarthra”): A Case of Paleogene Terrestrial Echolocation?

    Get PDF
    We here describe the endocranial cast of the Eocene archaic ungulate Hyopsodus lepidus AMNH 143783 (Bridgerian, North America) reconstructed from X-ray computed microtomography data. This represents the first complete cranial endocast known for Hyopsodontinae. The Hyopsodus endocast is compared to other known “condylarthran” endocasts, i. e. those of Pleuraspidotherium (Pleuraspidotheriidae), Arctocyon (Arctocyonidae), Meniscotherium (Meniscotheriidae), Phenacodus (Phenacodontidae), as well as to basal perissodactyls (Hyracotherium) and artiodactyls (Cebochoerus, Homacodon). Hyopsodus presents one of the highest encephalization quotients of archaic ungulates and shows an “advanced version” of the basal ungulate brain pattern, with a mosaic of archaic characters such as large olfactory bulbs, weak ventral expansion of the neopallium, and absence of neopallium fissuration, as well as more specialized ones such as the relative reduction of the cerebellum compared to cerebrum or the enlargement of the inferior colliculus. As in other archaic ungulates, Hyopsodus midbrain exposure is important, but it exhibits a dorsally protruding largely developed inferior colliculus, a feature unique among “Condylarthra”. A potential correlation between the development of the inferior colliculus in Hyopsodus and the use of terrestrial echolocation as observed in extant tenrecs and shrews is discussed. The detailed analysis of the overall morphology of the postcranial skeleton of Hyopsodus indicates a nimble, fast moving animal that likely lived in burrows. This would be compatible with terrestrial echolocation used by the animal to investigate subterranean habitat and/or to minimize predation during nocturnal exploration of the environment

    Combination of contrast with stress echocardiography: A practical guide to methods and interpretation

    Get PDF
    Contrast echocardiography has an established role for enhancement of the right heart Doppler signals, the detection of intra-cardiac shunts, and most recently for left ventricular cavity opacification (LVO). The use of intravenously administered micro-bubbles to traverse the myocardial microcirculation in order to outline myocardial viability and perfusion has been the source of research studies for a number of years. Despite the enthusiasm of investigators, myocardial contrast echocardiography (MCE) has not attained routine clinical use and LV opacification during stress has been less widely adopted than the data would support. The purpose of this review is to facilitate an understanding of the involved imaging technologies that have made this technique more feasible for clinical practice, and to guide its introduction into the practice of the non-expert user

    Radionuclide Imaging of Viable Myocardium: Is it Underutilized?

    Get PDF
    Coronary artery disease is the major cause of heart failure in North America. Viability assessment is important as it aims to identify patients who stand to benefit from coronary revascularization. Radionuclide modalities currently used in the assessment of viability include 201Tl SPECT, 99mTc-based SPECT imaging, and 18F-fluorodexoyglucose (18F-FDG)-PET imaging. Different advances have been made in the last year to improve the sensitivity and specificity of these modalities. In addition, the optimum amount of viable (yet dysfunctional) myocardium is important to identify in patients, as a risk–benefit ratio must be considered. Patients with predominantly viable/hibernating myocardium can benefit from revascularization from a mortality and morbidity standpoint. However, in patients with minimal viability (predominantly scarred myocardium), revascularization risk may certainly be too high to justify revascularization without expected benefit. Understanding different radionuclide modalities and new developments in the assessment of viability in ischemic heart failure patients is the focus of this discussion

    Cardiac resynchronization therapy guided by cardiovascular magnetic resonance

    Get PDF
    Cardiac resynchronization therapy (CRT) is an established treatment for patients with symptomatic heart failure, severely impaired left ventricular (LV) systolic dysfunction and a wide (> 120 ms) complex. As with any other treatment, the response to CRT is variable. The degree of pre-implant mechanical dyssynchrony, scar burden and scar localization to the vicinity of the LV pacing stimulus are known to influence response and outcome. In addition to its recognized role in the assessment of LV structure and function as well as myocardial scar, cardiovascular magnetic resonance (CMR) can be used to quantify global and regional LV dyssynchrony. This review focuses on the role of CMR in the assessment of patients undergoing CRT, with emphasis on risk stratification and LV lead deployment

    The Emergence of Emotions

    Get PDF
    Emotion is conscious experience. It is the affective aspect of consciousness. Emotion arises from sensory stimulation and is typically accompanied by physiological and behavioral changes in the body. Hence an emotion is a complex reaction pattern consisting of three components: a physiological component, a behavioral component, and an experiential (conscious) component. The reactions making up an emotion determine what the emotion will be recognized as. Three processes are involved in generating an emotion: (1) identification of the emotional significance of a sensory stimulus, (2) production of an affective state (emotion), and (3) regulation of the affective state. Two opposing systems in the brain (the reward and punishment systems) establish an affective value or valence (stimulus-reinforcement association) for sensory stimulation. This is process (1), the first step in the generation of an emotion. Development of stimulus-reinforcement associations (affective valence) serves as the basis for emotion expression (process 2), conditioned emotion learning acquisition and expression, memory consolidation, reinforcement-expectations, decision-making, coping responses, and social behavior. The amygdala is critical for the representation of stimulus-reinforcement associations (both reward and punishment-based) for these functions. Three distinct and separate architectural and functional areas of the prefrontal cortex (dorsolateral prefrontal cortex, orbitofrontal cortex, anterior cingulate cortex) are involved in the regulation of emotion (process 3). The regulation of emotion by the prefrontal cortex consists of a positive feedback interaction between the prefrontal cortex and the inferior parietal cortex resulting in the nonlinear emergence of emotion. This positive feedback and nonlinear emergence represents a type of working memory (focal attention) by which perception is reorganized and rerepresented, becoming explicit, functional, and conscious. The explicit emotion states arising may be involved in the production of voluntary new or novel intentional (adaptive) behavior, especially social behavior
    corecore