299 research outputs found

    Validity of Stokes-Einstein Relation in Soft Colloids up to the Glass Transition

    Get PDF
    We investigate the dynamics of kinetically frozen block copolymer micelles of different softness across a wide range of particle concentrations, from the fluid to the onset of glassy behavior, through a combination of rheology, dynamic light scattering and pulsed field gradient NMR spectroscopy. We additionally perform Brownian dynamics simulations based on an ultrasoft coarse-grained potential, which are found to be in quantitative agreement with experiments, capturing even the very details of dynamic structure factors S(Q, t) on approaching the glass transition. We provide evidence that for these systems the Stokes-Einstein relation holds up to the glass transition; given that it is violated for dense suspensions of hard colloids, our findings suggest that its validity is an intriguing signature of ultrasoft interactions.Comment: 5 pages, 4 figures, Supplementary Information, Accepted to Physical Review Letters (PRL) (2015

    Phase separation in star polymer-colloid mixtures

    Get PDF
    We examine the demixing transition in star polymer-colloid mixtures for star arm numbers f=2,6,16,32 and different star-colloid size ratios. Theoretically, we solve the thermodynamically self-consistent Rogers-Young integral equations for binary mixtures using three effective pair potentials obtained from direct molecular computer simulations. The numerical results show a spinodal instability. The demixing binodals are approximately calculated, and found to be consistent with experimental observations.Comment: 4 pages, 4 figures, submitted to PR

    Shallow water marine sediment bacterial community shifts along a natural CO2 gradient in the Mediterranean Sea off Vulcano, Italy.

    Get PDF
    The effects of increasing atmospheric CO(2) on ocean ecosystems are a major environmental concern, as rapid shoaling of the carbonate saturation horizon is exposing vast areas of marine sediments to corrosive waters worldwide. Natural CO(2) gradients off Vulcano, Italy, have revealed profound ecosystem changes along rocky shore habitats as carbonate saturation levels decrease, but no investigations have yet been made of the sedimentary habitat. Here, we sampled the upper 2 cm of volcanic sand in three zones, ambient (median pCO(2) 419 μatm, minimum Ω(arag) 3.77), moderately CO(2)-enriched (median pCO(2) 592 μatm, minimum Ω(arag) 2.96), and highly CO(2)-enriched (median pCO(2) 1611 μatm, minimum Ω(arag) 0.35). We tested the hypothesis that increasing levels of seawater pCO(2) would cause significant shifts in sediment bacterial community composition, as shown recently in epilithic biofilms at the study site. In this study, 454 pyrosequencing of the V1 to V3 region of the 16S rRNA gene revealed a shift in community composition with increasing pCO(2). The relative abundances of most of the dominant genera were unaffected by the pCO(2) gradient, although there were significant differences for some 5 % of the genera present (viz. Georgenia, Lutibacter, Photobacterium, Acinetobacter, and Paenibacillus), and Shannon Diversity was greatest in sediments subject to long-term acidification (>100 years). Overall, this supports the view that globally increased ocean pCO(2) will be associated with changes in sediment bacterial community composition but that most of these organisms are resilient. However, further work is required to assess whether these results apply to other types of coastal sediments and whether the changes in relative abundance of bacterial taxa that we observed can significantly alter the biogeochemical functions of marine sediments

    Internet-based psychotherapy in children with obsessive-compulsive disorder (OCD): protocol of a randomized controlled trial

    Get PDF
    Background: Obsessive-compulsive disorder (OCD) in children can lead to a huge burden on the concerned patients and their family members. While successful state-of-the art cognitive behavioral interventions exist, there is still a lack of available experts for treatment at home, where most symptoms manifest. Internet-based cognitive behavioral therapy (iCBT) could overcome these restrictions; however, studies about iCBT in children with OCD are rare and mostly target computerized self-help resources and only email contact with the therapist. Therefore, we intended to build up and to evaluate an iCBT approach for children with OCD, replacing successful elements of traditional in-office face-to-face CBT, with face-to-face teleconferences, online materials, and apps. Methods: With the help of a pilot feasibility study, we developed the iCBT consisting of 14 teleconference sessions with the child and parents. The sessions are supported by an app assessing daily and weekly symptoms and treatment course completed by children and parents. Additionally, we obtain heart rate and activity scores from the child via wristbands during several days and exposure sessions. Using a waiting list randomized control trial design, we aim to treat and analyze 20 children with OCD immediately after a diagnostic session whereas the control group of another set of 20 OCD patients will be treated after waiting period of 16 weeks. We will recruit 30 patients in each group to take account for potential dropouts. Outcomes for the treatment group are evaluated before randomization (baseline, t0), 16 weeks (end of treatment, t1), 32 weeks (follow-up 1, t2), and 48 weeks after randomization (follow-up 2, t3). For the waiting list group, outcomes are measured before the first randomization (baseline), at 16 weeks (waiting list period), 32 weeks (end of treatment), 48 weeks after the first randomization (follow-up I), and 64 weeks after the first randomization (follow-up II). Discussion: Based on our experience of feasibility during the pilot study, we were able to develop the iCBT approach and the current study will investigate treatment effectiveness. Building up an iCBT approach, resembling traditional in-office face-to-face therapy, may ensure the achievement of well-known therapy effect factors, the acceptance in both patients and clinicians, and the wide distribution within the health system. Trial registration: ClinicalTrials.gov NCT05037344 . Registered May 2019, last release August 13th, 2021

    Global distribution and diversity of marine Verrucomicrobia

    Get PDF
    Author Posting. © The Author(s), 2011. This is the author's version of the work. It is posted here by permission of Nature Publishing Group for personal use, not for redistribution. The definitive version was published in The ISME Journal 6 (2012): 1499-1505, doi:10.1038/ismej.2012.3.Verrucomicrobia is a bacterial phylum that is commonly detected in soil but little is known about the distribution and diversity of this phylum in the marine environment. To address this, we analyzed the marine microbial community composition in 506 samples from the International Census of Marine Microbes as well as eleven coastal samples taken from the California Current. These samples from both the water column and sediments covered a wide range of environmental conditions. Verrucomicrobia were present in 98% of the analyzed samples and thus appeared nearly ubiquitous in the ocean. Based on the occurrence of amplified 16S rRNA sequences, Verrucomicrobia constituted on average 2% of the water column and 1.4% of the sediment bacterial communities. The diversity of Verrucomicrobia displayed a biogeography at multiple taxonomic levels and thus, specific lineages appeared to have clear habitat preference. We found that Subdivision 1 and 4 generally dominated marine bacterial communities, whereas Subdivision 2 was confined to low salinity waters. Within the subdivisions, Verrucomicrobia community composition were significantly different in the water column compared to sediment as well as within the water column along gradients of salinity, temperature, nitrate, depth, and overall water column depth. Although we still know little about the ecophysiology of Verrucomicrobia lineages, the ubiquity of this phylum suggests that it may be important for the biogeochemical cycle of carbon in the ocean.We would like to thank the UCI Undergraduate Research Opportunity Program (S.F.), the National Science Foundation (OCE-0928544 and OCE-1046297, A.C.M.) and the Alfred P. Sloan Foundation (S.H., D.M.W., M.S.) for supporting the work

    Inattention and reaction time variability are linked to ventromedial prefrontal volume in adolescents

    Get PDF
    Background Neuroimaging studies of attention-deficit/hyperactivity disorder (ADHD) have most commonly reported volumetric abnormalities in the basal ganglia, cerebellum, and prefrontal cortices. Few studies have examined the relationship between ADHD symptomatology and brain structure in population-based samples. We investigated the relationship between dimensional measures of ADHD symptomatology, brain structure, and reaction time variability—an index of lapses in attention. We also tested for associations between brain structural correlates of ADHD symptomatology and maps of dopaminergic gene expression. Methods Psychopathology and imaging data were available for 1538 youths. Parent ratings of ADHD symptoms were obtained using the Development and Well-Being Assessment and the Strengths and Difficulties Questionnaire (SDQ). Self-reports of ADHD symptoms were assessed using the youth version of the SDQ. Reaction time variability was available in a subset of participants. For each measure, whole-brain voxelwise regressions with gray matter volume were calculated. Results Parent ratings of ADHD symptoms (Development and Well-Being Assessment and SDQ), adolescent self-reports of ADHD symptoms on the SDQ, and reaction time variability were each negatively associated with gray matter volume in an overlapping region of the ventromedial prefrontal cortex. Maps of DRD1 and DRD2 gene expression were associated with brain structural correlates of ADHD symptomatology. Conclusions This is the first study to reveal relationships between ventromedial prefrontal cortex structure and multi-informant measures of ADHD symptoms in a large population-based sample of adolescents. Our results indicate that ventromedial prefrontal cortex structure is a biomarker for ADHD symptomatology. These findings extend previous research implicating the default mode network and dopaminergic dysfunction in ADHD

    Thermal Conductivity of Ordered Mesoporous Nanocrystalline Silicon Thin Films Made from Magnesium Reduction of Polymer-Templated Silica

    Full text link
    This paper reports the cross-plane thermal conductivity of ordered mesoporous nanocrystalline silicon thin films between 25 and 315 K. The films were produced by evaporation induced self-assembly of mesoporous silica followed by magnesium reduction. The periodic ordering of pores in mesoporous silicon was characterized by X-ray diffraction and direct SEM imaging. The average crystallite size, porosity, and film thickness were about 13 nm, 25-35%, and 140-340 nm, respectively. The pores were arranged in a face-centered cubic lattice. The cross-plane thermal conductivity of the mesoporous silicon thin films was measured using the 3ω method. It was between 3 and 5 orders of magnitude smaller than that of bulk single crystal silicon in the temperature range considered. The effects of temperature, film thickness, and copolymer template on the thermal conductivity were investigated. A model based on kinetic theory was used to accurately predict the measured thermal conductivity for all temperatures. On the one hand, both the measured thermal conductivity and the model predictions showed a temperature dependence of k proportional to T2 at low temperatures, typical of amorphous and strongly disordered materials. On the other hand, at high temperatures the thermal conductivity of mesoporous silicon films reached a maximum, indicating a crystalline-like behavior. These results will be useful in designing mesoporous silicon with desired thermal conductivity by tuning its morphology for various applications
    • …
    corecore