431 research outputs found

    Amplifying ribbon extensometer

    Get PDF
    Device provides accurate measurement of strain on flexible membranes and fabrics. It is compact and lightweight, has strain-amplification capability up to five, and has an accuracy better than one percent

    Amplifying ribbon extensometer

    Get PDF
    A self-contained, nonelectrical strain gage capable of amplifying strain inputs and preserving the maximum strain measurement for later observance is presented

    Nozzle extraction process and handlemeter for measuring handle

    Get PDF
    Method and apparatus for quantitatively measuring the handle of fabrics and other flexible materials is presented. Handle is that term used to refer to the qualities of drapability, flexibility, compressibility, foldability, stretchability, pliability, etc., possessed by fabrics and other flexible materials. In the present invention the handle of a material sample is quantified by measuring the force required to draw the sample through an orifice and expressing the resultant extractive force as a function of test apparatus geometry and the amount of sample drawn through the orifice to arrive at quantitative measure of handle, to be defined as handle modulus, for the sample in question

    Development of Hydrogen Isotoperatio Mass Spectrometry for Organochlorine Molecules

    Get PDF

    Deep diversification of an AAV capsid protein by machine learning.

    Get PDF
    Modern experimental technologies can assay large numbers of biological sequences, but engineered protein libraries rarely exceed the sequence diversity of natural protein families. Machine learning (ML) models trained directly on experimental data without biophysical modeling provide one route to accessing the full potential diversity of engineered proteins. Here we apply deep learning to design highly diverse adeno-associated virus 2 (AAV2) capsid protein variants that remain viable for packaging of a DNA payload. Focusing on a 28-amino acid segment, we generated 201,426 variants of the AAV2 wild-type (WT) sequence yielding 110,689 viable engineered capsids, 57,348 of which surpass the average diversity of natural AAV serotype sequences, with 12-29 mutations across this region. Even when trained on limited data, deep neural network models accurately predict capsid viability across diverse variants. This approach unlocks vast areas of functional but previously unreachable sequence space, with many potential applications for the generation of improved viral vectors and protein therapeutics

    Revealing the last 13,500 years of environmental history from the multiproxy record of a mountain lake (Lago Enol, northern Iberian Peninsula)

    Get PDF
    This is the author's accepted manuscript. The final publication is available at Springer via http://dx.doi.org/10.1007/s10933-009-9387-7.We present the Holocene sequence from Lago Enol (43°16′N, 4°59′W, 1,070 m a.s.l.), Cantabrian Mountains, northern Spain. A multiproxy analysis provided comprehensive information about regional humidity and temperature changes. The analysis included sedimentological descriptions, physical properties, organic carbon and carbonate content, mineralogy and geochemical composition together with biological proxies including diatom and ostracod assemblages. A detailed pollen study enabled reconstruction of variations in vegetation cover, which were interpreted in the context of climate changes and human impact. Four distinct stages were recognized for the last 13,500 years: (1) a cold and dry episode that includes the Younger Dryas event (13,500–11,600 cal. year BP); (2) a humid and warmer period characterizing the onset of the Holocene (11,600–8,700 cal. year BP); (3) a tendency toward a drier climate during the middle Holocene (8,700–4,650 cal. year BP); and (4) a return to humid conditions following landscape modification by human activity (pastoral activities, deforestation) in the late Holocene (4,650–2,200 cal. year BP). Superimposed on relatively stable landscape conditions (e.g. maintenance of well established forests), the typical environmental variability of the southern European region is observed at this site.The Spanish Inter-Ministry Commission of Science and Technology (CICYT), the Spanish National Parks agency, the European Commission, the Spanish Ministry of Science, and the European Social Fund

    Revealing the last 13,500 years of environmental history from the multiproxy record of a mountain lake (Lago Enol, northern Iberian Peninsula)

    Get PDF
    This is the author's accepted manuscript. The final publication is available at Springer via http://dx.doi.org/10.1007/s10933-009-9387-7.We present the Holocene sequence from Lago Enol (43°16′N, 4°59′W, 1,070 m a.s.l.), Cantabrian Mountains, northern Spain. A multiproxy analysis provided comprehensive information about regional humidity and temperature changes. The analysis included sedimentological descriptions, physical properties, organic carbon and carbonate content, mineralogy and geochemical composition together with biological proxies including diatom and ostracod assemblages. A detailed pollen study enabled reconstruction of variations in vegetation cover, which were interpreted in the context of climate changes and human impact. Four distinct stages were recognized for the last 13,500 years: (1) a cold and dry episode that includes the Younger Dryas event (13,500–11,600 cal. year BP); (2) a humid and warmer period characterizing the onset of the Holocene (11,600–8,700 cal. year BP); (3) a tendency toward a drier climate during the middle Holocene (8,700–4,650 cal. year BP); and (4) a return to humid conditions following landscape modification by human activity (pastoral activities, deforestation) in the late Holocene (4,650–2,200 cal. year BP). Superimposed on relatively stable landscape conditions (e.g. maintenance of well established forests), the typical environmental variability of the southern European region is observed at this site.The Spanish Inter-Ministry Commission of Science and Technology (CICYT), the Spanish National Parks agency, the European Commission, the Spanish Ministry of Science, and the European Social Fund

    Trade-offs between vegetative growth and acorn production in Quercus lobata during a mast year: the relevance of crop size and hierarchical level within the canopy

    Get PDF
    The concept of trade-offs between reproduction and other fitness traits is a fundamental principle of life history theory. For many plant species, the cost of sexual reproduction affects vegetative growth in years of high seed production through the allocation of resources to reproduction at different hierarchical levels of canopy organization. We have examined these tradeoffs at the shoot and branch level in an endemic California oak, Quercus lobata, during a mast year. To determine whether acorn production caused a reduction in vegetative growth, we studied trees that were high and low acorn producers, respectively. We observed that in both low and high acorn producers, shoots without acorns located adjacent to reproductive shoots showed reduced vegetative growth but that reduced branch-level growth on acorn-bearing branches occurred only in low acorn producers. The availability of local resources, measured as previous year growth, was the main factor determining acorn biomass. These findings show that the costs of reproduction varied among hierarchical levels, suggesting some degree of physiological autonomy of shoots in terms of acorn production. Costs also differed among trees with different acorn crops, suggesting that trees with large acorn crops had more available resources to allocate for growth and acorn production and to compensate for immediate local costs of seed production. These findings provide new insight into the proximate mechanisms for mast-seeding as a reproductive strategy

    The Anatomy of the bill Tip of Kiwi and Associated Somatosensory Regions of the Brain: Comparisons with Shorebirds

    Get PDF
    Three families of probe-foraging birds, Scolopacidae (sandpipers and snipes), Apterygidae (kiwi), and Threskiornithidae (ibises, including spoonbills) have independently evolved long, narrow bills containing clusters of vibration-sensitive mechanoreceptors (Herbst corpuscles) within pits in the bill-tip. These ‘bill-tip organs’ allow birds to detect buried or submerged prey via substrate-borne vibrations and/or interstitial pressure gradients. Shorebirds, kiwi and ibises are only distantly related, with the phylogenetic divide between kiwi and the other two taxa being particularly deep. We compared the bill-tip structure and associated somatosensory regions in the brains of kiwi and shorebirds to understand the degree of convergence of these systems between the two taxa. For comparison, we also included data from other taxa including waterfowl (Anatidae) and parrots (Psittaculidae and Cacatuidae), non-apterygid ratites, and other probe-foraging and non probe-foraging birds including non-scolopacid shorebirds (Charadriidae, Haematopodidae, Recurvirostridae and Sternidae). We show that the bill-tip organ structure was broadly similar between the Apterygidae and Scolopacidae, however some inter-specific variation was found in the number, shape and orientation of sensory pits between the two groups. Kiwi, scolopacid shorebirds, waterfowl and parrots all shared hypertrophy or near-hypertrophy of the principal sensory trigeminal nucleus. Hypertrophy of the nucleus basorostralis, however, occurred only in waterfowl, kiwi, three of the scolopacid species examined and a species of oystercatcher (Charadriiformes: Haematopodidae). Hypertrophy of the principal sensory trigeminal nucleus in kiwi, Scolopacidae, and other tactile specialists appears to have co-evolved alongside bill-tip specializations, whereas hypertrophy of nucleus basorostralis may be influenced to a greater extent by other sensory inputs. We suggest that similarities between kiwi and scolopacid bill-tip organs and associated somatosensory brain regions are likely a result of similar ecological selective pressures, with inter-specific variations reflecting finer-scale niche differentiation

    Screen for Localized Proteins in Caulobacter crescentus

    Get PDF
    Precise localization of individual proteins is required for processes such as motility, chemotaxis, cell-cycle progression, and cell division in bacteria, but the number of proteins that are localized in bacterial species is not known. A screen based on transposon mutagenesis and fluorescence activated cell sorting was devised to identify large numbers of localized proteins, and employed in Caulobacter crescentus. From a sample of the clones isolated in the screen, eleven proteins with no previously characterized localization in C. crescentus were identified, including six hypothetical proteins. The localized hypothetical proteins included one protein that was localized in a helix-like structure, and two proteins for which the localization changed as a function of the cell cycle, suggesting that complex three-dimensional patterns and cell cycle-dependent localization are likely to be common in bacteria. Other mutants produced localized fusion proteins even though the transposon has inserted near the 5′ end of a gene, demonstrating that short peptides can contain sufficient information to localize bacterial proteins. The screen described here could be used in most bacterial species
    • …
    corecore