3,485 research outputs found

    A Spitzer Search For Planetary-Mass Brown Dwarfs With Circumstellar Disks: Candidate Selection

    Get PDF
    We report on initial results from a Spitzer program to search for very low-mass brown dwarfs in Ophiuchus. This program is an extension of an earlier study by Allers et al. which had resulted in an extraordinary success rate, 18 confirmed out of 19 candidates. Their program combined near-infrared and Spitzer photom- etry to identify objects with very cool photospheres together with circumstellar disk emission to indicate youth. Our new program has obtained deep IRAC pho- tometry of a 0.5 deg2 field that was part of the original Allers et al. study. We report 18 new candidates whose luminosities extend down to 10-4 L\cdot which sug- gests masses down to ~ 2 MJ if confirmed. We describe our selection techniques, likely contamination issues, and follow-on photometry and spectroscopy that are in progress

    A Near-Infrared Spectroscopic Study of Young Field Ultracool Dwarfs

    Full text link
    We present a near-infrared (0.9-2.4 microns) spectroscopic study of 73 field ultracool dwarfs having spectroscopic and/or kinematic evidence of youth (~10-300 Myr). Our sample is composed of 48 low-resolution (R~100) spectra and 41 moderate-resolution spectra (R>~750-2000). First, we establish a method for spectral typing M5-L7 dwarfs at near-IR wavelengths that is independent of gravity. We find that both visual and index-based classification in the near-IR provide consistent spectral types with optical spectral types, though with a small systematic offset in the case of visual classification at J and K band. Second, we examine features in the spectra of ~10 Myr ultracool dwarfs to define a set of gravity-sensitive indices based on FeH, VO, K, Na and H-band continuum shape. We then create an index-based method for classifying the gravities of M6-L5 dwarfs that provides consistent results with gravity classifications from optical spectroscopy. Our index-based classification can distinguish between young and dusty objects. Guided by the resulting classifications, we propose a set of low-gravity spectral standards for the near-IR. Finally, we estimate the ages corresponding to our gravity classifications.Comment: Published in ApJ. IDL program for calculating indices (allers13_index.pro) included in the source gzipped ta

    A Stellar Census of the Tucana-Horologium Moving Group

    Full text link
    We report the selection and spectroscopic confirmation of 129 new late-type (K3-M6) members of the Tuc-Hor moving group, a nearby (~40 pc), young (~40 Myr) population of comoving stars. We also report observations for 13/17 known Tuc-Hor members in this spectral type range, and that 62 additional candidates are likely to be unassociated field stars; the confirmation frequency for new candidates is therefore 129/191 = 67%. We have used RVs, Halpha emission, and Li6708 absorption to distinguish contaminants and bona fide members. Our expanded census of Tuc-Hor increases the known population by a factor of ~3 in total and by a factor of ~8 for members with SpT>K3, but even so, the K-M dwarf population of Tuc-Hor is still markedly incomplete. The spatial distribution of members appears to trace a 2D sheet, with a broad distribution in X and Y, but a very narrow distribution (+/-5 pc) in Z. The corresponding velocity distribution is very small, with a scatter of +/-1.1 km/s about the mean UVW velocity. We also show that the isochronal age (20--30 Myr) and the lithium depletion age (40 Myr) disagree, following a trend seen in other PMS populations. The Halpha emission follows a trend of increasing EW with later SpT, as seen for young clusters. We find that members have been depleted of lithium for spectral types of K7.0-M4.5. Finally, our purely kinematic and color-magnitude selection procedure allows us to test the efficiency and completeness for activity-based selection of young stars. We find that 60% of K-M dwarfs in Tuc-Hor do not have ROSAT counterparts and would be omitted in Xray selected samples. GALEX UV-selected samples using a previously suggested criterion for youth achieve completeness of 77% and purity of 78%. We suggest new selection criteria that yield >95% completeness for ~40 Myr populations.(Abridged)Comment: Accepted to AJ; 28 pages, 12 figures, 5 tables in emulateapj forma

    R=100,000 Spectroscopy of Photodissociation Regions: H2 Rotational Lines in the Orion Bar

    Full text link
    Ground state rotational lines of H2 are good temperature probes of moderately hot (200-1000 K) gas. The low A-values of these lines result in low critical densities while ensuring that the lines are optically thin. ISO observations of H2 rotational lines in PDRs reveal large quantities of warm gas that are difficult to explain via current models, but the spatial resolution of ISO does not resolve the temperature structure of the warm gas. We present and discuss high spatial resolution observations of H2 rotational line emission from the Orion Bar.Comment: 4 pages, 1 figure, Proceedings of the ESO Workshop on High Resolution Infrared Spectroscop

    Discovery of a Young L Dwarf Binary, SDSS J224953.47+004404.6AB

    Full text link
    We report discovery of a young 0.32" L dwarf binary, SDSS J2249+0044AB, found as the result of a Keck LGSAO imaging survey of young field brown dwarfs. Weak K, Na, and FeH features as well as strong VO absorption in the integrated-light J-band spectrum indicate a young age for the system. From spatially resolved K-band spectra we determine spectral types of L3 and L5 for components A and B, respectively. SDSS J2249+0044A is spectrally very similar to G196-3B, an L3 companion to a young M2.5 field dwarf. Thus, we adopt 100 Myr (the age estimate of the G196-3 system) as the age of SDSS J2249+0044AB, but ages of 12-790 Myr are possible. By comparison to G196-3B, we estimate a distance to SDSS J2249+0044AB of 54 +- 16 pc and infer a projected separation of 17 +- 5 AU for the binary. Comparison of the luminosities to evolutionary models at an age of 100 Myr yields masses of 0.029 and 0.022 Msun for SDSS J2249+0044A and B, respectively. Over the possible ages of the system (12-790 Myr), the mass of SDSS J2249+0044A could range from 0.011 to 0.070 Msun and the mass of SDSS J2249+0044B could range from 0.009 to 0.065 Msun. Evolutionary models predict that either component could be burning deuterium, which could result in a mass ratio as low as 0.4, or alternatively, a reversal in the luminosities of the binary. We find a likely proper motion companion, GSC 00568-01752, which lies 48.9" away (2600 AU) and has SDSS+2MASS colors consistent with an early M dwarf. The photometric distance to GSC 00568-01752 is 53 +- 15 pc, in agreement with our distance estimate for SDSS J2249+0044AB. The space motion of SDSS J2249+0044AB shows no obvious coincidence with known young moving groups. The unusually red near-IR colors, young age, and low masses of the binary make it an important template for studying planetary-mass objects found by direct imaging surveys.Comment: revised, accepted versio
    corecore