5,437 research outputs found

    New Lithium Measurements in Metal-Poor Stars

    Get PDF
    We provide *lambda*6708 Li 1 measurements in 37 metal-poor stars, most of which are poorly-studied or have no previous measurements, from high-resolution and high-S/N spectroscopy obtained with the McDonald Observatory 2.1m and 2.7m telescopes. The typical line strength and abundance uncertainties, confirmed by the thinness of the Spite plateau manifested by our data and by comparison with previous measurements, are <=4 mAng and <=0.07-0.10 dex respectively. Two rare moderately metal-poor solar-Teff dwarfs, HIP 36491 and 40613, with significantly depleted but still detectable Li are identified; future light element determinations in the more heavily depeleted HIP 40613 may provide constraints on the Li depletion mechanism acting in this star. We note two moderately metal-poor and slightly evolved stars, HIP 105888 and G265-39, that appear to be analogs of the low-Li moderately metal-poor subgiant HD 201889. Preliminary abundance analysis of G 265-39 finds no abnormalities that suggest the low Li content is associated with AGB mass-transfer or deep mixing and p-capture. We also detect line doubling in HIP 4754, heretofore classified as SB1.Comment: Accepted for publication in PASP, volume 912 (Feb 2012) 15 pages, 3 figures, 2 table

    The role of mentorship in protege performance

    Full text link
    The role of mentorship on protege performance is a matter of importance to academic, business, and governmental organizations. While the benefits of mentorship for proteges, mentors and their organizations are apparent, the extent to which proteges mimic their mentors' career choices and acquire their mentorship skills is unclear. Here, we investigate one aspect of mentor emulation by studying mentorship fecundity---the number of proteges a mentor trains---with data from the Mathematics Genealogy Project, which tracks the mentorship record of thousands of mathematicians over several centuries. We demonstrate that fecundity among academic mathematicians is correlated with other measures of academic success. We also find that the average fecundity of mentors remains stable over 60 years of recorded mentorship. We further uncover three significant correlations in mentorship fecundity. First, mentors with small mentorship fecundity train proteges that go on to have a 37% larger than expected mentorship fecundity. Second, in the first third of their career, mentors with large fecundity train proteges that go on to have a 29% larger than expected fecundity. Finally, in the last third of their career, mentors with large fecundity train proteges that go on to have a 31% smaller than expected fecundity.Comment: 23 pages double-spaced, 4 figure

    EMIC Waves in the Outer Magnetosphere: Observations of an Off-Equator Source Region.

    Get PDF
    Electromagnetic ion cyclotron (EMIC) waves at large L shells were observed away from the magnetic equator by the Magnetospheric MultiScale (MMS) mission nearly continuously for over four hours on 28 October 2015. During this event, the wave Poynting vector direction systematically changed from parallel to the magnetic field (toward the equator), to bidirectional, to antiparallel (away from the equator). These changes coincide with the shift in the location of the minimum in the magnetic field in the southern hemisphere from poleward to equatorward of MMS. The local plasma conditions measured with the EMIC waves also suggest that the outer magnetospheric region sampled during this event was generally unstable to EMIC wave growth. Together, these observations indicate that the bidirectionally propagating wave packets were not a result of reflection at high latitudes but that MMS passed through an off-equator EMIC wave source region associated with the local minimum in the magnetic field

    First-principles theory of ferroelectric phase transitions for perovskites: The case of BaTiO3

    Full text link
    We carry out a completely first-principles study of the ferroelectric phase transitions in BaTiO3_3. Our approach takes advantage of two features of these transitions: the structural changes are small, and only low-energy distortions are important. Based on these observations, we make systematically improvable approximations which enable the parameterization of the complicated energy surface. The parameters are determined from first-principles total-energy calculations using ultra-soft pseudopotentials and a preconditioned conjugate-gradient scheme. The resulting effective Hamiltonian is then solved by Monte Carlo simulation. The calculated phase sequence, transition temperatures, latent heats, and spontaneous polarizations are all in good agreement with experiment. We find the transitions to be intermediate between order-disorder and displacive character. We find all three phase transitions to be of first order. The roles of different interactions are discussed.Comment: 33 pages latex file, 9 figure

    Spatial distributions of perchloroethylene reactive transport parameters in the Borden Aquifer

    Get PDF
    We determined the descriptive statistical and spatial geostatistical properties of the perchloroethene ln Kd and the ln k of a 1.5 m thick by 10 m horizontal transect of the Borden aquifer near the location of the Stanford-Waterloo (SW) tracer experiment. The ln Kd distribution is not normal and is right skewed because of a few high values that occur localized in two regions of the transect. In contrast, the ln k data can be characterized by a normal distribution. A linear regression of ln Kd on ln k yields a statistically significant positive correlation, also shown at small lags in the cross correlogram. No significant vertical or horizontal trend in the ln Kd data was detected. The semivariogram ranges of ln k and ln Kd differ from one another in the vertical direction (0.33 ± 0.06 m and 0.20 ± 0.04 m, respectively) and are much less than the horizontal ranges (a few meters). Despite significant effort the horizontal range of ln Kd remains poorly characterized because of limitations of the sample locations. Many of the characteristics described above do not match those assumed in prior theoretical studies that examined the importance of various aquifer characteristics on SW tracer transport. We suggest that there is knowledge to be gained by revisiting the conclusions of these prior studies in light of the new information presented here

    Lightweight Bulldozer Attachment for Construction and Excavation on the Lunar Surface

    Get PDF
    A lightweight bulldozer blade prototype has been designed and built to be used as an excavation implement in conjunction with the NASA Chariot lunar mobility platform prototype. The combined system was then used in a variety of field tests in order to characterize structural loads, excavation performance and learn about the operational behavior of lunar excavation in geotechnical lunar simulants. The purpose of this effort was to evaluate the feasibility of lunar excavation for site preparation at a planned NASA lunar outpost. Once the feasibility has been determined then the technology will become available as a candidate element in the NASA Lunar Surface Systems Architecture. In addition to NASA experimental testing of the LANCE blade, NASA engineers completed analytical work on the expected draft forces using classical soil mechanics methods. The Colorado School of Mines (CSM) team utilized finite element analysis (FEA) to study the interaction between the cutting edge of the LANCE blade and the surface of soil. FEA was also used to examine various load cases and their effect on the lightweight structure of the LANCE blade. Overall it has been determined that a lunar bulldozer blade is a viable technology for lunar outpost site preparation, but further work is required to characterize the behavior in 1/6th G and actual lunar regolith in a vacuum lunar environment

    'Parasitic invasions' or sources of good governance: constraining foreign competition in Hong Kong banking, 1956-81

    Get PDF
    This paper investigates the operation and impact of the moratorium on new banking licences imposed in Hong Kong in 1965 and the claims that foreign banks destabilised the banking system and drained resources from the colony. First it examines foreign banks' attempts to circumvent the moratorium through claims of special circumstances and buying interests in local banks, and secondly it examines the efforts of incumbents to extend barriers to non-bank financial institutions and to branches of foreign banks. The general conclusions are that while the moratorium was aimed at increasing the stability of the banking system, it had the effect of decreasing the regulatory breadth of the government, and reducing incentives for mergers and acquisitions that might have improved governance

    First Passage Time in a Two-Layer System

    Full text link
    As a first step in the first passage problem for passive tracer in stratified porous media, we consider the case of a two-dimensional system consisting of two layers with different convection velocities. Using a lattice generating function formalism and a variety of analytic and numerical techniques, we calculate the asymptotic behavior of the first passage time probability distribution. We show analytically that the asymptotic distribution is a simple exponential in time for any choice of the velocities. The decay constant is given in terms of the largest eigenvalue of an operator related to a half-space Green's function. For the anti-symmetric case of opposite velocities in the layers, we show that the decay constant for system length LL crosses over from L−2L^{-2} behavior in diffusive limit to L−1L^{-1} behavior in the convective regime, where the crossover length L∗L^* is given in terms of the velocities. We also have formulated a general self-consistency relation, from which we have developed a recursive approach which is useful for studying the short time behavior.Comment: LaTeX, 28 pages, 7 figures not include

    Warm Microhabitats Drive Both Increased Respiration and Growth Rates of Intertidal Consumers

    Get PDF
    Rocky intertidal organisms are often exposed to broadly fluctuating temperatures as the tides rise and fall. Many mobile consumers living on the shore are immobile during low tide, and can be exposed to high temperatures on calm, warm days. Rising body temperatures can raise metabolic rates, induce stress responses, and potentially affect growth and survival, but the effects may differ among species with different microhabitat preferences. We measured aerial and aquatic respiration rates of 4 species of Lottia limpets from central California, and estimated critical thermal maxima. In a variety of microhabitats in the field, we tracked body temperatures and measured limpet growth rates on experimental plates colonized by natural microalgae. Limpet species found higher on the shore had lower peak respiration rates during high temperature aerial exposure, and had higher critical thermal maxima. Using our long-term records of field body temperatures, we estimated cumulative respiration to be 5 to 14% higher in warm microhabitats. Growth rates in the field appear to be driven by an interaction between available microalgal food resources, low tide temperature, and limpet species identity, with limpets from warmer microhabitats responding positively to higher food availability and higher low tide temperatures. Stressful conditions in warm microhabitats make up a small portion of the total lifetime of these limpets, but the greater proportion of time spent at non-stressful, but warm, body temperatures may result in enhanced growth compared to limpets living in cooler microhabitats

    Regulation of Black Hole Winds and Jets across the Mass Scale

    Get PDF
    We present a study of the mechanical power generated by both winds and jets across the black hole mass scale. We begin with the study of ionized X-ray winds and present a uniform analysis using Chandra grating spectra. The high-quality grating spectra facilitate the characterization of the outflow velocity, ionization, and column density of the absorbing gas. We find that the kinetic power of the winds, derived from these observed quantities, scales with increasing bolometric luminosity as log (L wind, 42/Cv ) = (1.58 ± 0.07)log (L Bol, 42) - (3.19 ± 0.19). This suggests that supermassive black holes may be more efficient than stellar-mass black holes in launching winds, per unit filling factor, Cv . If the black hole binary (BHB) and active galactic nucleus (AGN) samples are fit individually, the slopes flatten to αBHB = 0.91 ± 0.31 and αAGN = 0.63 ± 0.30 (formally consistent within errors). The broad fit and individual fits both characterize the data fairly well, and the possibility of common slopes may point to common driving mechanisms across the mass scale. For comparison, we examine jet production, estimating jet power based on the energy required to inflate local bubbles. The jet relation is log (L Jet, 42) = (1.18 ± 0.24)log (L Bondi, 42) - (0.96 ± 0.43). The energetics of the bubble associated with Cygnus X-1 are particularly difficult to determine, and the bubble could be a background supernova remnant. If we exclude Cygnus X-1 from our fits, then the jets follow a relation consistent with the winds, but with a higher intercept, log (L Jet, 42) = (1.34 ± 0.50)log (L Bondi, 42) - (0.80 ± 0.82). The formal consistency in the wind and jet scaling relations, when assuming that L Bol and L Bondi are both proxies for mass accretion rate, suggests that a common launching mechanism may drive both flows; magnetic processes, such as magnetohydrodynamics and magnetocentrifugal forces, are viable possibilities. We also examine winds that are moving at especially high velocities, v \u3e 0.01c. These ultra-fast outflows tend to resemble the jets more than the winds in terms of outflow power, indicating that we may be observing a regime in which winds become jets. A transition at approximately L Bol ≈ 10-2 L Edd is apparent when outflow power is plotted versus Eddington fraction. At low Eddington fractions, the jet power is dominant, and at high Eddington fractions, the wind power is dominant. This study allows for the total power from black hole accretion, both mechanical and radiative, to be characterized in a simple manner and suggests possible connections between winds and jets. X-ray wind data and jet cavity data will enable stronger tests
    • 

    corecore