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Abstract 11 

Rocky intertidal organisms are often exposed to broadly fluctuating temperatures as the tides rise 12 

and fall. Many mobile consumers living on the shore are immobile during low tide, and can be 13 

exposed to high temperatures on calm, warm days. Rising body temperatures can raise metabolic 14 

rates, induce stress responses, and potentially affect growth and survival, but the effects may 15 

differ among species with different microhabitat preferences. We measured aerial and aquatic 16 

respiration rates of four species of Lottia limpets from central California, and estimated critical 17 

thermal maxima. In a variety of microhabitats in the field we tracked body temperatures and 18 

measured limpet growth rates on experimental plates colonized with natural microalgae. Limpet 19 



species found higher on the shore had lower peak respiration rates during high temperature aerial 20 

exposure, and had higher critical thermal maxima. Using our long-term records of field body 21 

temperatures, we estimated cumulative respiration to be 5 to 14% higher in warm microhabitats. 22 

Growth rates in the field were driven by an interaction between available microalgal food 23 

resources, low tide temperature, and limpet species identity, with limpets from warmer 24 

microhabitats responding positively to higher food availability and higher low tide temperatures. 25 

Stressful conditions in warm microhabitats make up a small portion of the total lifetime of these 26 

limpets, but the greater proportion of time spent at non-stressful, but warm, body temperatures 27 

may enhance growth compared to limpets living in cooler microhabitats.  28 

Keywords: intertidal zone, limpet, microalgae, shore height, temperature stress, thermotolerance 29 

Introduction 30 

Climate change research in a variety of aquatic systems has pointed to the potential for 31 

mildly increasing water temperatures to increase ectotherms’ metabolic and foraging rates, and 32 

to increase the impacts of top-down control by consumers on resources (O’Connor 2009, 33 

O’Connor et al. 2009, Hoekman 2010, Kratina et al. 2012, O’Regan et al. 2014). As waters 34 

warm, the increasing speed of fundamental chemical reactions at the cellular level leads to 35 

increasing energy usage for maintenance metabolism and growth (Hochachka & Somero 2002) 36 

that must typically be balanced by increasing the rate of consumption, which in some cases can 37 

strengthen trophic cascades (Kratina et al. 2012). Provided there is room for acclimatization to a 38 

warmer temperature regime (Stillman 2003, Deutsch et al. 2008, Tewksbury et al. 2008), the rate 39 

of energy flow up through the trophic levels of the system could increase as species living below 40 

their optimum performance temperature move up the rising slope of their respective temperature 41 



performance curves (Fig. 1A; Huey & Stevenson 1979), potentially driving greater productivity 42 

(Angilletta et al. 2010).  43 

In the rocky intertidal zone, the effects of benign water temperature fluctuations as 44 

seawater warms and cools during high tide have been pointed to as potential benefits for some 45 

intertidal consumers. Sanford and collaborators have shown that foraging rate increases within a 46 

limited range of increasing water temperature for key intertidal species, including the keystone 47 

predator Pisaster ochraceus, which increases its per capita predation on intertidal mussels that 48 

are often the dominant competitors for space in the mid intertidal zone (Sanford 1999, Sanford & 49 

Menge 2001, Sanford 2002, Pincebourde et al. 2008). Warmer waters can also increase intertidal 50 

mussel growth (Phillips 2005, Kroeker et al. 2014) and speed up feeding rates in predatory snails 51 

(Largen 1967, Bayne & Scullard 1978, Yamane & Gilman 2009, Miller 2013). However, those 52 

are the rare cases for which we know where on the thermal performance curve an intertidal 53 

organism sits relative to the range of varying temperatures experienced in its habitat. For other 54 

organisms it is difficult to predict when or how often rising body temperatures could move the 55 

organism from the ascending slope of the curve, past its optimum temperature, and onto the 56 

descending slope. The distribution of temperatures experienced by intertidal organisms is 57 

dominated by the influence of water temperature at high tide, while aerial exposure during low 58 

tide can bring swings to either colder or warmer temperatures, as shown for high-intertidal-zone 59 

limpets from Monterey Bay, California (Figure 1B). Most of these temperature fluctuations are 60 

mild enough to avoid temperature stress (hatched region, Figure 1B, with the 28 °C upper limit 61 

based on heat shock protein expression data from Dong et al. 2008), but occasional hot weather 62 

conditions can drive body temperatures to extremes (gray region, Figure 1B), when low tides 63 

leave marine organisms high and dry for hours at a time (Helmuth 1999, Denny & Harley 2006, 64 



Denny et al. 2009). The temporal coincidence of warm water and air temperatures may also have 65 

complicated interacting effects. Periods of cooler water temperatures at high tide have the 66 

potential to offset negative effects of warm low tide conditions by providing time to recover 67 

from stress, but periods with warm low tides and warm high tides occurring out of phase by 68 

several days could have strong negative effects by leaving little time to recover (Pincebourde et 69 

al. 2012).  70 

Much of the climate-change related research in intertidal systems has focused on the 71 

negative effects of increasing temperature, particularly on extreme aerial temperatures that 72 

induce heat stress and occasionally cause mortality events during low tide (Tomanek & Somero 73 

1999, Stillman 2002, Tomanek 2002, Muñoz et al. 2005, Jones et al. 2009, Miller et al. 2009, 74 

Tomanek & Zuzow 2010, Miller et al. 2014). The assumption is often that low tide conditions, 75 

when animals and algae are exposed to air, can drive species past their optimal temperature range 76 

and down the descending slope of the temperature performance curve, with negative energetic 77 

consequences derived from limited oxygen delivery or organ failure (Pörtner 2012) and the need 78 

to shunt energy into heat shock responses to recover from high temperature insults (Feder & 79 

Hofmann 1999). In addition, due to the physiological need for available water, most algal 80 

photosynthesis and animal feeding occurs at high tide when body temperatures are at equilibrium 81 

with the cool ocean. As the tide drops and the rocks dry, photosynthesis slows (Hunt & Denny 82 

2008) and nearly all feeding activity comes to a stop (Craig 1968, Eaton 1968, Miller 1968). As a 83 

result, the potential benefits of a warming body and faster metabolism that can occur in fully 84 

aquatic systems are decoupled from the opportunity to feed or photosynthesize for the many 85 

sessile, or functionally-sessile, organisms in the intertidal zone during low tide.  86 



The cessation of feeding does not necessarily mark the end of energy acquisition, since 87 

digestion of a meal may take hours, and those hours may include warm daytime low tide 88 

conditions.  In aquatic habitats, when food is abundant, the temperature for optimal growth in 89 

ectotherms can increase (Elliott 1976, Elliott 1982, Stich & Lampert 1984, Pangle & Peacor 90 

2010), and warmer temperatures can increase the rate of digestion (Brett & Higgs 1970, 91 

Diefenbach 1975, Bayne & Scullard 1978). However, in the intertidal zone where food 92 

availability or foraging time may be restricted, the scope for growth will be lower and there can 93 

be an expanded range of high temperatures where metabolic maintenance costs outstrip energy 94 

intake (Woodin et al. 2013, Iles 2014). Therefore, along the seashore, it remains an open 95 

question as to whether warm, dry conditions during daytime low tides are a potential benefit or 96 

simply a cost for consumers and their algal resources, though some studies show that the effects 97 

of warm temperatures at low tide need not be solely negative (Gilman 2006, Blanchette et al. 98 

2007). 99 

We address this question using limpets in the genus Lottia found on the central coast of 100 

California. In rocky intertidal zones around the world, limpets represent an important class of 101 

herbivorous grazers that can structure the intertidal community by selectively removing algae 102 

and settling invertebrates (Jones 1948, Branch 1981, Hawkins & Hartnoll 1983). Limpets forage 103 

while the rocks are awash during rising and falling high tides, and typically remain fixed in place 104 

on the rock during low tide when the sea recedes (though some tropical species move with the 105 

tides, Williams & Morritt 1995). This foraging pattern often precludes any sort of shelter-seeking 106 

behavior when low tide environmental conditions might generate temperature and desiccation 107 

stress. Unlike more mobile species that could shuttle between different thermal microhabitats to 108 

control body temperature near some optimum performance peak (Huey 1991, Hertz et al. 1993, 109 



Allen & Levinton 2014), limpets are functionally sessile at low tide and their body temperatures 110 

can exceed the optimum temperature range, in some cases inducing sublethal or lethal stress 111 

(Dong et al. 2008). While the rock is dry there is no opportunity to graze microalgae, but there is 112 

some indication that digestion may continue during low tide periods (Walker 1968; L. Miller 113 

personal observation). Limpets are ideal for studies of temperature effects, as their large foot 114 

keeps them tightly thermally coupled to the underlying substratum, so that temperature 115 

measurements of the substratum can act as accurate proxies for limpet body temperature without 116 

disturbing the organism (Wolcott 1973, Denny & Harley 2006). 117 

The four Lottia species utilized in this study differ in their preferred shore height and 118 

microhabitat (Figure 2). The vertical distributions of the four species overlap to some extent, but 119 

they are often found in distinct microhabitats. L. pelta Rathke and L. limatula Carpenter are 120 

found in the low and mid intertidal zone, with L. pelta favoring wave-exposed walls or mussel 121 

beds where it consumes both microalgae and macroalgae, while L. limatula is often found on 122 

more sun-exposed horizontal surfaces and feeds primarily on microalgae (Craig 1968, Eaton 123 

1968, Wolcott 1973). L. scabra Gould and L. austrodigitalis Murphy are found higher on the 124 

shore, above the Mytilus californianus mussel zone and often above the limits of the Endocladia 125 

muricata macroalgal zone (Wolcott 1973). Both high-zone species are found on vertical walls, 126 

but L. scabra is also found on horizontal, sun-exposed rocks where L. austrodigitalis is often 127 

absent (Collins 1976, Hahn & Denny 1989). L. austrodigitalis is the highest ranging limpet on 128 

the central California coast, often found more than five meters above Mean Lower Low Water 129 

(MLLW) on wave-exposed rock walls (Miller 1968) in a region where the maximal still-water 130 

tidal range is approximately 2.5 m.  131 



In Monterey Bay, L. austrodigitalis overlaps with a cryptic congener, L. digitalis Rathke, 132 

which can only reliably be distinguished via genetic methods, but the two species share similar 133 

behaviors and occupy the same microhabitats (Murphy 1978, Crummett & Eernisse 2007). 134 

Recent work at our field site at Hopkins Marine Station (HMS hereafter, Pacific Grove, CA, 135 

36.6217N 121.9043W) has shown that L. austrodigitalis makes up the majority (88-89%) of the 136 

population of the cryptic species pair living on high shore rock habitats where we sampled (Dong 137 

et al. 2008, Dong & Somero 2009). This work also indicates that the two species overlap in their 138 

median upper thermal tolerance limits, with L. austrodigitalis being marginally more tolerant and 139 

producing more thermally stable cytosolic malate dehydrogenase (Dong & Somero 2009). We 140 

refer to L. austrodigitalis hereafter in this study while acknowledging that a small fraction of our 141 

samples may include L. digitalis.  142 

To explore the potential effects of sub-lethal temperature variation on intertidal limpets, 143 

we measured respiration rate across a range of temperatures under aquatic and aerial conditions 144 

in the laboratory and tracked growth in the field while measuring microhabitat temperature and 145 

microalgal food supply. We looked for evidence of physiological compensation for increasing 146 

temperatures via reductions in the Q10  response of respiration (Q10 is defined as the ratio of the 147 

rates of a physiological or biochemical process over a 10 °C rise in temperature, where the 148 

common expectation is for a doubling of the rate, Q10 = 2, Hochachka & Somero 2002), and 149 

measured upper critical thermal maxima during aerial exposure. We expected to find increasing 150 

respiration rates with increasing body temperatures, such that field microhabitats with warmer 151 

low tide temperatures could either yield reduced limpet growth due to greater energetic demands, 152 

or increased growth if sufficient food was available to support higher metabolic rates. We 153 



hypothesized that high shore and low shore limpets would differ in their response to warmer low 154 

tide temperatures, with high shore species being better adapted to cope with higher temperatures.  155 

Methods 156 

Collections 157 

We collected the four species of limpets: L. scabra, L. austrodigitalis, L. limatula, and L. 158 

pelta, from south- and east-facing rocks at HMS during September and October 2013. The 159 

individuals collected for the trials were representative of the range of sizes of sub-adult and small 160 

adult limpets found at HMS for each of the four species (Table S1). Batches of limpets were 161 

collected and held in a shaded seawater table for 2 to 7 days prior to use in the respiration trials. 162 

Temperature in the seawater table was monitored with an iButton temperature logger (DS1921G, 163 

Maxim Integrated, San Jose, CA, USA) and remained at 15 °C during the experimental period. 164 

Respiration trials 165 

The respiration chamber consisted of a custom-machined aluminum block with 15 wells 166 

of 15 ml volume each, and a bolt-on top plate that contained ports for purging the chambers and 167 

making oxygen measurements. The block was submerged in a digitally-controlled water bath to 168 

maintain temperatures during trials. Oxygen measurements were taken using ruthenium sensor 169 

dots adhered to a glass port in the top plate for each well (aerial trials: RedEye patch, Ocean 170 

Optics, Dunedin, FL, USA; aquatic trials: SP-PSt3-NAU-D5-YOP,  PreSens Precision Sensing 171 

GmbH, Regensburg, Germany) and read with a fiber-optic fluorescence-based optode system 172 

(NeoFox, Ocean Optics). The chamber top plate contained machined recesses and an indexing 173 

pin to ensure that the optode was placed at the same height and incident angle relative to the 174 

sensor patch for every reading, since deviations in positioning will substantially alter the signal 175 



produced by the optode measuring system. Each oxygen sensor dot was recalibrated following 176 

each replicate trial using water-saturated normoxic air and pure CO2 at the corresponding 177 

experimental temperature to make a two point calibration. 178 

Aerial respiration 179 

For aerial respiration trials, we reduced the volume of each chamber to 5 ml by inserting 180 

a 10 ml aluminum plug in the bottom of each well. 12 limpets, three per species, were run in 181 

individual wells along with three empty (blank) wells for each replicate trial. Each well also 182 

contained a 5 mm diameter piece of paper towel wetted with seawater to maintain 100% relative 183 

humidity during the trial. The aluminum block was initially held at 15 °C for 20 min, and the 184 

temperature of the water bath and block was then raised or lowered at a rate of 10 °C h-1 to the 185 

target experimental temperature for each trial. A total of 9 experimental temperatures were used 186 

in the aerial trials: 10, 15, 20, 25, 30, 32.5, 35, 37.5, and 40 °C. The time during the ramp to 187 

lower and higher temperatures allowed limpets to acclimate to the chamber, while for trial 188 

temperatures of 15 °C we waited 30 min before beginning the measurement process (equivalent 189 

to the minimum acclimation period for the 10 and 20 °C trials). The top plate of the chambers 190 

was bolted on and ports sealed to begin a 2 h measurement period. During the sampling period, 191 

the fiber optic sensor for the optode system was moved to each chamber well in succession for a 192 

15 s reading, and each well was sampled every 8 min. The 2 h exposure allowed sufficient time 193 

for limpets to deplete a measurable amount of oxygen even at the lowest temperatures.  194 

Aquatic respiration 195 

The full 15 ml volume of the respiration chamber wells was used for the aquatic trials. 196 

We used artificial seawater (Instant Ocean, Blacksburg, VA, USA) mixed to a practical salinity 197 

of 33 to fill each chamber. Seawater was equilibrated to 15 °C and aerated before filling the 198 



chambers. As in the aerial respiration trials, a single limpet was placed in each well, with three 199 

representatives of each of the four species filling 12 of the chamber wells, along with three 200 

empty (blank) wells. Aquatic temperature trials took place at 10, 12.5, 15, and 17.5 °C, to cover 201 

the range of typical seawater temperatures found through the year at HMS. The temperature of 202 

the chambers was changed at 10 °C h-1, and a minimum acclimation period of 30 min was given 203 

for trials that took less than 30 min to reach the experimental target temperature (12.5, 15, and 204 

17.5 °C trials). We used the 10 °C h-1 rate of water temperature change to harmonize our trial run 205 

times with those of the aerial respiration trials, and although our largest shift in water 206 

temperature did not exceed 5 °C, it should be noted that this rate of water temperature change is 207 

faster than the rate of natural water temperature shifts at this field site.  Immediately prior to 208 

closing the chambers, we flushed each chamber with aerated seawater, pre-equilibrated to the 209 

experimental temperature. Prior to taking a reading in each chamber, the water was stirred 210 

manually for 20 s with a stir rod mounted in one of the top ports. Readings were taken for 15 s, 211 

and each chamber was sampled every 8 min for 1 h. We chose this shorter trial time to avoid 212 

limpets depleting oxygen in the water.  213 

Processing respiration data 214 

Immediately following a respiration trial, we weighed each limpet to the nearest 0.1 mg, 215 

in air and submerged in seawater. The displaced mass of the live limpet in seawater was used to 216 

calculate the volume that the limpet occupied in a chamber well. The volume of air or seawater 217 

in the chamber (minus the volume of the limpet) was used to calculate the volume of oxygen 218 

present at each time point. For aquatic trials, the concentration of O2
 in seawater (mg l-1) was 219 

calculated using the temperature and salinity values for the trial with the relationship from 220 

Benson and Krause (1984), and converted to µmol of O2 using the volume of seawater in the 221 



chamber. We fit a linear regression to the µmol of O2 through time to estimate the O2 222 

consumption rate. The values from the blank control chambers were averaged and used to correct 223 

for any drift that occurred during a trial. We dissected the tissue from the shell of each limpet 224 

and dried it in a drying oven at 60 °C for 48 h. The dry tissue mass was used to calculate the 225 

mass-specific oxygen consumption rate for each limpet. Each limpet was used in only a single 226 

temperature trial, and a total of 12 replicate limpets were used at each of the experimental 227 

temperatures for each species. We estimated Arrhenius break temperatures for log-transformed 228 

respiration rate with a piecewise regression using the R package segmented (Muggeo 2008).   229 

We calculated Q10 values for aerial respiration rate across each successive pair of 230 

temperatures in the experiment using the equation 231 

𝑄10 =  (
𝑅𝑎𝑡𝑒2

𝑅𝑎𝑡𝑒1
)

10

𝑇𝑒𝑚𝑝2 −𝑇𝑒𝑚𝑝1  . 232 

To calculate 95% confidence intervals on this estimate, we used a bootstrap resampling 233 

procedure on each pair of 12 respiration values at two temperatures to produce a distribution of 234 

log-transformed Q10 estimates that better accounts for potential skew in the calculated values 235 

than a standard error estimate based on the assumption of normality (Davison & Hinkley 1997).  236 

Heat coma temperatures in air 237 

At the conclusion of each aerial respiration trial, we probed each limpet to determine if it 238 

was still adhered to the chamber wall. Any limpet that was poorly adhered and had also retracted 239 

the mantle tissue back from the edge of the shell was judged to be in heat coma. We fit a logit-240 

link binomial generalized linear model to calculate the median heat coma temperature, termed 241 

the Critical Thermal Maximum, CTmax, for each species after 2 h at the experimental 242 

temperature.  243 



Field growth experiment 244 

In June 2013, we deployed a series of experimental plates in the rocky intertidal zone at 245 

HMS to track limpet growth in various thermal microhabitats. Each plate was made of 246 

aluminum, 10 cm diameter and 12 mm thick, topped with a layer of light gray rubber grip tape 247 

(Safety Walk Tape, 3M, St. Paul, MN, USA). A 20 mm tall stainless steel mesh fence with 5.5 248 

mm square openings was attached around the outer perimeter of the plate to dissuade limpets 249 

from crawling off the plate. We machined a pocket into the underside of each aluminum plate to 250 

hold an individually calibrated, wax-coated, iButton temperature datalogger with a resolution of 251 

0.5 °C (DS1921G, Maxim Integrated, San Jose, CA, USA). The high thermal conductivity of 252 

aluminum, the close proximity of the iButton to the upper surface of the plate, and the high 253 

conductive heat exchange between the substratum and the large foot of a limpet allowed us to 254 

use the iButton temperature as a direct proxy for the body temperature of the limpets attached to 255 

the plate without disturbing the organisms (Wolcott 1973, Denny & Harley 2006). The iButtons 256 

recorded temperatures in each plate every 12 minutes; we downloaded the data every two weeks.  257 

We attached the experimental plates to the granite bedrock at HMS using a single bolt 258 

through the center of the plate, and ensured good thermal contact with the underlying rock by 259 

installing a thin layer of concrete between the plate and rock surface to fill surface irregularities. 260 

Each plate held four individuals from one of the four species of Lottia described above, and we 261 

deployed additional plates without limpets to serve as grazer exclusion controls. The resulting 262 

density of 0.5 limpets cm-2 is similar to values measured for natural high shore L. scabra 263 

populations and lower than densities of limpet populations lower on the shore (Sutherland 1970, 264 

Morelissen & Harley 2007). A total of twelve plates per species (48 plates with limpets + 12 265 

grazer exclusion plates) were placed on sloped or vertical surfaces at 1.4 or 1.7 m above Mean 266 



Lower Low Water in horizontal transects at six sites. The sites included wave-exposed and 267 

wave-protected microhabitats that faced predominantly north, east, or west, encompassing much 268 

of the variety in microhabitats occupied by these species at HMS. The limpets were collected 269 

from surrounding rocks and individually tagged with numbered bee tags (The Bee Works, 270 

Orillia, ON, Canada) and cyanoacrylate glue. When limpets were lost from plates during the 271 

experiment, they were replaced to keep the total number of limpets on each plate at four. Missing 272 

limpets typically crawled over the fences and re-established on the surrounding rock face, and 273 

the different species showed difference propensities for escaping, with an average of 0.11 ± 0.15 274 

(1 SD) L. scabra, 0.70 ± 0.42 L. limatula, 1.12 ± 0.85 L. pelta, and 1.31 ± 0.94 L. austrodigitalis 275 

limpets leaving per plate per census period. It should be noted that L. scabra typically establishes 276 

a home “scar” and grows the margin of the shell to fit the contours of the rock (Wolcott 1973). 277 

That tight fit was lost when we placed L. scabra on our plates, and it is possible that this may 278 

have affected desiccation rates and energy expenditures initially. We observed that L. scabra 279 

quickly established new home scars on the plates, and new shell growth matched the margins of 280 

the shell to the flatter surface of the experimental plate by the next census date. 281 

Following the initial deployment on June 17, the limpets on each plate were censused on 282 

July 10, August 6, September 6, October 6, November 6, and December 1, 2013 as tide cycles 283 

and wave conditions allowed. We tracked limpet growth using digital photographs taken from 284 

overhead on each plate with a framer designed to keep a constant height and orientation to the 285 

plate, so that we could measure the projected area of each limpet shell to 0.1 mm2 using ImageJ 286 

(Rasband).  287 

We used a PAM fluorometer (Diving-PAM, Walz GmbH, Effeltrich, Germany) to track 288 

microalgal densities on the experimental plates. Microalgae were allowed to settle naturally from 289 



the ocean for one month prior to the start of data collection. During night time low tides 290 

associated with each limpet census, we took six haphazardly arrayed readings on each plate of 291 

dark-adapted fluorescence (Fo), which serves as a non-destructive proxy for microalgal 292 

chlorophyll a density (Barranguet & Kromkamp 2000, Honeywill et al. 2002, Serôdio et al. 293 

2008). The tip of the fiber-optic measuring head of the fluorometer was fitted with a 10mm 294 

spacer to maintain a fixed distance from the plate surface, and the opening covered an area of 53 295 

mm2. The tip was held in place at each measurement site until the Fo value stabilized (typically 296 

3-5 seconds) before recording a value, as recommended by the manufacturer. As the amount of 297 

surface moisture can affect Fo values (Maggi et al. 2013), we restricted sampling to periods when 298 

the plates were moist, but not actively splashed or submerged by the tide.   299 

We used a generalized least squares linear model from R package nlme (Pinheiro & Bates 300 

2000) to assess the relationship between loge-transformed algal fluorescence (Fo) during each 301 

census period and average daily maximum temperature, with limpet species (or grazer exclusion 302 

plates) as a fixed factor. The temporal correlation of Fo values on individual plates across the 303 

census periods was incorporated using a AR(1) autoregressive correlation structure (Pinheiro & 304 

Bates 2000). A fixed effect of shore level (1.4m or 1.7m) was initially included in the model, but 305 

was non-significant based on likelihood ratio tests, so it was removed from the final model, and 306 

plates from both shore heights were pooled. For the model of limpet growth rate (shell + tissue 307 

mass change relative to initial mass, mg day-1) in each census period, we used a linear mixed 308 

effects model to evaluate the interacting fixed effects of average daily maximum temperature 309 

during a census period, our proxy for log-transformed algal density (Fo) at the start of each 310 

census period, and limpet species identity (n = 1152 observations among 359 limpets across 6 311 

census periods). The model included a random effect for plates and a random effect for 312 



individual limpets nested within plates to account for nesting and for repeated measures of 313 

individual limpets across census periods. Log-transformed Fo from the start of each census 314 

period was also included as a random covariate to account for temporal autocorrelation, and the 315 

model included an AR(1) correlation structure for the random factors. While there are numerous 316 

ways to describe the temperature conditions in the field, we used the average daily maximum 317 

temperature during a census period to summarize the differences between plates deployed in 318 

different microhabitats. Model residuals were checked for normality and for evidence of 319 

heterogeneity of variances. All analyses were carried out in R 3.1.1 (R Development Core Team 320 

2014). 321 

 322 

Estimating cumulative respiration 323 

Using the temperature records from a subset of experimental plates and the data from our 324 

respiration trials, we estimated the cumulative respired O2 of an average sized limpet of each 325 

species on the coolest and warmest plates (2 plates per species) on which that species was 326 

present in the field experiment, for the entire period from June to December 2013. We chose to 327 

use the single lowest variation and single highest variation plate for each species to encompass 328 

the full range of temperature variation the limpets might have experienced in the field 329 

experiment. Because the experimental plates were alternately submerged and emersed by the 330 

tides, we used NOAA tide records for Monterey, CA to determine when plates were likely 331 

submerged at high tide, and used respiration rates from the aquatic respiration trials for those 332 

time periods. All other time periods used the aerial respiration data. The respiration rate at a 333 

given temperature (µmol O2 hr-1 g-1 dry tissue mass) was multiplied by the dry tissue mass of a 334 

representative average sized limpet of each species and assumed constant for a 12 minute 335 



interval to estimate the respired µmol of O2 for each time step. When the temperature for a time 336 

point fell between two of the respiration trial temperatures, we used linear interpolation between 337 

the two closest trial temperatures to estimate respiration at the intermediate temperature. For any 338 

temperatures that fell below the limits of our respiration trial temperatures, we used the 339 

respiration rate value for the lowest trial temperature.   340 

Results 341 

Respiration 342 

 All four species of Lottia limpets showed an increase in aerial respiration rate as 343 

temperatures rose until reaching a peak temperature after which respiration dropped as limpets 344 

entered heat coma (Figure 3A, closed symbols). L. scabra, the high shore species often found in 345 

sun-exposed horizontal microhabitats, had the highest temperature of peak respiration at 37.5 °C. 346 

The high-shore, vertical-wall- favoring species L. austrodigitalis and the low-shore sun-exposed 347 

L. limatula both had a peak respiration rate near 35 °C.  The low-shore species L. pelta, which 348 

favors cooler wave-exposed vertical walls, had the lowest peak respiration temperature at 32.5 349 

°C.  By 40 °C all of the species exhibited a decline in respiration rate, likely indicative of heart 350 

failure and heat coma (Bjelde & Todgham 2013). Our range of trial temperatures and the high 351 

peak temperature of respiration for L. scabra did not allow for a proper estimation of a break 352 

temperature for that species, but the break temperatures of the other species were lower than the 353 

likely break point for L. scabra near 37 °C (Table 1). All four species exhibited their highest Q10 354 

values between 10 and 20 °C (4.3 for L. scabra, 2.3 for L. austrodigitalis, 2.9 for L. limatula, and 355 

2.2 for L. pelta, Figure 3B). Each species showed a relaxation in Q10 to the 1.1 – 1.5 range 356 

between 20 °C and 30 °C, with a brief increase in Q10 prior to the peak respiration temperature. 357 



 For the narrower range of water temperatures used in the aquatic trials, changes in 358 

respiration rate were much smaller than the aerial trials (Figure 3A, open symbols) with 359 

overlapping 95% confidence intervals at all temperatures from 10 to 17.5 °C. Three of the 360 

species, L. scabra, L. austrodigitalis, and L. limatula, had aquatic respiration Q10 values between 361 

2.0 and 2.2 over the 10 to 17.5 °C range, while L. pelta had a lower Q10 of 1.4.  362 

Heat coma temperatures 363 

   Each of the four limpet species exhibited symptoms of heat coma at the highest aerial 364 

respiration trial temperatures (Table 1), and there were significant differences in median CTmax 365 

between species (Analysis of deviance for Temperature χ2 = 218, df = 1, P < 0.001; Species χ2 = 366 

43.9, df = 3, P < 0.001). The two high shore species, L. scabra and L. austrodigitalis had 367 

significantly higher median CTmax values than the low shore species (L. scabra = L. 368 

austrodigitalis > L. limatula > L. pelta, Tukey post-hoc tests, P < 0.05). All L. limatula and L. 369 

pelta had entered heat coma at 40 °C, while some representatives of L. scabra and L. 370 

austrodigitalis remained adhered and responsive at the conclusion of the 2 h exposure even at the 371 

highest temperature in the experiment.  372 

Field growth experiment 373 

 The ANCOVA analysis of log-transformed dark-adapted fluorescence Fo, our proxy for 374 

algal density, showed a non-significant interaction between average daily maximum temperature 375 

and limpet species identity (F4, 350 = 1.89, P = 0.111), but there was a significant main effect of 376 

limpet species identity (F4, 350 = 80.8, P < 0.001) and the average daily maximum temperature 377 

covariate (F1, 350 = 104.3, P < 0.001, Table S2). Coefficient estimates for the model are given in 378 

Table S3. Tukey post-hoc tests of the main effect of limpet species (including grazer exclusions) 379 

show that the intercepts for all four limpet species treatments were significantly lower than the 380 



grazer exclusion plates, while L. pelta and L. scabra were not significantly different from each 381 

other, nor were L. limatula and L. austrodigitalis. Limpet grazing reduced the amount of algae 382 

on plates relative to grazer exclusions, but did not change the slope of the negative relationship 383 

between algal density and average daily temperature range found on all plates (Figure 4).   384 

 Using the regression values for limpet mass vs. projected area in the census photographs 385 

(Table S4), we were able to track limpet growth non-invasively on the experimental field plates 386 

through the experiment. There was a significant three-way interaction between average daily 387 

maximum temperature during a census period, log-transformed algal fluorescence at the start of 388 

each census period, and limpet species identity (Table 2, F3, 671 = 8.12, P < 0.001). Partial effects 389 

plots for the 3-way ANCOVA (Fox & Weisberg 2011) revealed that predicted limpet growth rate 390 

remained flat or increased with increasing average daily maximum temperature across a range of 391 

representative Fo values, but that the slope of the relationship differed among limpet species and 392 

Fo levels (Figure 5; coefficient estimates given in Table S5). 393 

Estimated respiration in the field 394 

  The experimental plates deployed in the field at HMS showed a 3-fold variation in 395 

average daily temperature range from the coolest to warmest plate for each species, and a 9 to 396 

13°C difference in maximum temperatures (Figure 6A, Table 3). Using the temperature data 397 

from the coolest and warmest plates for each species, we predicted a 5 to 14% increase in 398 

cumulative respired µmol O2 for average sized limpets living on the warmest plates (Figure 6B 399 

and Figure 6C, Table 3) over the entire experimental period, relative to the coolest plate. None of 400 

the plates exceeded the estimated CTmax thresholds for any of the species during the 24 weeks of 401 

the experiment.    402 



Discussion 403 

All four species of Lottia limpets exhibit a large increase in respiration rate with 404 

increasing temperature while aerially emersed. In seawater temperatures within the normal 405 

yearly range for HMS (10 – 17.5 °C), respiration rates are typically in the range of 8 to 18 µmol 406 

O2 h-1 g-1 (dry tissue mass), but when limpets are exposed to body temperatures in air within the 407 

range of extremes found at low tide, their peak respiration rates range from 30 to 60 µmol O2 h-1 408 

g-1. At low temperatures there was substantial overlap in aerial and aquatic respiration rates, 409 

though the trend for increasing respiration rate in water appears lower than in air. A lower 410 

overall respiration rate in water at higher temperatures has been observed in L. digitalis (Bjelde 411 

& Todgham 2013), but other intertidal species such as Pisaster seastars show the opposite 412 

pattern, with higher aquatic respiration rates than aerial respiration rates at the same temperature 413 

(Fly et al. 2012).  414 

We see some evidence for differential respiration responses and susceptibility to heat 415 

stress while emersed between the low shore species (L. pelta and L. limatula), and the high shore 416 

species (L. austrodigitalis and L. scabra). Both high shore species have higher median CTmax 417 

values and maintain slightly lower aerial respiration rates from 25 to 32.5 °C than the low shore 418 

species. L. pelta, the low shore species that is typically found on vertical faces, in wave-exposed 419 

microhabitats, or hiding under algal cover, is the least tolerant of prolonged aerial emersion at 420 

high temperatures and had the lowest CTmax and lowest temperature of peak respiration, though 421 

interestingly it also maintains a relatively high aerial respiration rate at temperatures common in 422 

those cool microhabitats. It may be the case that L. pelta is particularly adapted to maximizing 423 

metabolism and growth in cool microhabitats, at the cost of reduced tolerance to higher 424 

temperatures. The second low shore species, L. limatula, which inhabits similar microhabitats as 425 



L. pelta but is also often found on horizontal, sun-exposed rocks in the low and mid-shore zone, 426 

shows the most drastic increase in aerial respiration rate, increasing nearly 6-fold over the 10 to 427 

35 °C range. Both low shore species had estimated respiration break points within one degree of 428 

their median CTmax values, so that the range of temperatures where maximum respiration rate 429 

occurred was followed closely by the onset of heat coma. In contrast, L. austrodigitalis, which is 430 

the highest- living limpet species on the shore at HMS, limits its respiration rate increase to half 431 

that of L. limatula across that same temperature range, perhaps reflecting a need to limit energy 432 

expenditure during the frequent prolonged aerial emersion periods that come from living high on 433 

the shore and the reduced availability of algal food resources to support a high metabolic rate. 434 

The CTmax for L. austrodigitalis was 4 °C higher than the estimated respiration break point 435 

temperature, indicating that this high shore species can maintain attachment to the rock and 436 

avoid signs of heat coma longer after its respiration has begun to falter. The other high shore 437 

species, L. scabra, is typically found in warmer microhabitats than L. austrodigitalis, living on 438 

horizontal, sun-exposed rocks that occasionally reach the highest intertidal temperatures at HMS. 439 

While L. scabra exhibits a slightly higher respiration rate than L. austrodigitalis, the peak rate 440 

occurs at a slightly higher temperature, and is accompanied by a slightly higher CTmax, indicating 441 

greater thermotolerance.  442 

Each of the limpet species shows some evidence of metabolic rate control as they move 443 

through the 20 to 30 °C temperature range, which is the most common range of warm, but not 444 

extreme, daytime low tide rock temperatures at this site (Denny et al. 2006, Miller et al. 2009). 445 

Q10 values for this temperature range typically remain below 1.5, lower than the expected value 446 

of 2 to 3 for many temperature-dependent metabolic processes (Hochachka & Somero 2002). 447 

There are a growing number of examples of intertidal organisms showing some level of 448 



metabolic rate control or depression during warm temperature exposures, including the limpet L. 449 

digitalis (Bjelde & Todgham 2013) which has an overlapping range with L. austrodigitalis in 450 

Monterey Bay. Limpets from South Africa (Marshall & McQuaid 1991) and some intertidal 451 

snails also exhibit metabolic rate control (McMahon & Russell-Hunter 1977, Sokolova et al. 452 

2000, Marshall et al. 2011) in the range of warm daytime low tide temperatures, although the 453 

response is not universal for intertidal gastropods (McMahon & Russell-Hunter 1977, McMahon 454 

et al. 1995). Among the tropical species that exhibit metabolic rate depression, the magnitude of 455 

that depression appears to be greater than that shown here by the temperate limpets, and it is 456 

hypothesized that the more frequent and severe exposure to high temperatures in the tropics may 457 

accentuate the need to control energy expenditures during prolonged emersion (Marshall et al. 458 

2011). Even when there is evidence for metabolic rate control at moderate warm temperatures in 459 

intertidal molluscs, Q10 values still tend to increase at the extreme limits of thermotolerance 460 

(Marshall et al. 2011), as seen with all four limpet species measured here. 461 

In the field, we observe a strong negative relationship between average daily maximum 462 

temperature and algal fluorescence (Fo) on plates in different thermal microhabitats. The effect 463 

of limpet grazing lowers algal density compared to grazer exclusion plates, but does not change 464 

the negative relationship with increasing temperature. The greater amount of variability in Fo 465 

values on “No grazer” plates may be due to a combination of factors related to plate location on 466 

the shore, including exposure to sun or shading, wave splash, and the presence of small 467 

opportunistic grazers such as Littorina snails that may have crawled through the mesh fence and 468 

grazed the plates at some sites. Additionally, the consistent feeding of limpets on the grazed 469 

plates may serve to mute the inherent variability in microalgal density along the shore.  For the 470 

limpets growing on those plates, the interacting effects of algal availability and temperature 471 



across plates led to flat or slightly positive growth rates with increasing maximum temperature 472 

and algal resources.  473 

The observed increase in growth rates on warmer experimental plates, at least in the 474 

presence of higher algal densities for L. austrodigitalis and L. scabra, supports the possibility of 475 

a potential benefit to mild increases in low tide temperature above the predominant sea surface 476 

temperature range. On the warmest plates measured here, limpets spent only 10% of the total 477 

time at temperatures above 20 °C during the 24 week field experiment (Figure 1B shows 478 

representative data for two L. scabra plates), and never exceeded the estimated CTmax limits for 479 

any of the species. The predictions of increases in cumulative respired O2 on the warmest plates 480 

ranged from 5 to 14%, but the increased respiration did not manifest as significant decreases in 481 

growth rate. The positive or neutral interactive effects of algal density with temperature on 482 

limpet growth rates seem to outweigh the negative effects of increasing temperature alone. In 483 

fully aquatic habitats, if there is sufficient food to support higher metabolic rates, growth rates 484 

often increase (O’Connor 2009, Pangle & Peacor 2010, O’Regan et al. 2014), and the 485 

combination of warmer waters and warmer low tide conditions between sites on the coast has 486 

also been implicated in faster growth rates in mussels and other intertidal consumers (Phillips 487 

2005, Blanchette et al. 2007). In the current experiment, where ocean temperature is consistent 488 

across all of our microsites, we see evidence for positive effects of warmer low tide conditions 489 

alone. However, it is important to reiterate that these low tide temperature conditions were 490 

primarily non-stressful, and that low tide temperatures approaching the CTmax values of the 491 

limpets species did not occur. Conditions on our temperate shoreline are only rarely stressful 492 

enough to reach critical thermal maxima, in contrast to tropical sites where limpets and other 493 

high shore grazers may routinely experience near-lethal temperatures (Williams & Morritt 1995, 494 



Williams et al. 2005, Marshall et al. 2010, Dong et al. 2014), and so further warming in more 495 

stressful tropical regions will likely have predominantly negative effects. 496 

There are several caveats to this general conclusion of beneficial effects of increased 497 

microalgal densities and warmer temperatures on limpet growth rates. All four limpet species 498 

graze microalgae and diatoms from the substratum, but the different thermal environments in our 499 

field experiment may drive differences in algal growth rate and species identity that could 500 

change the available energy for limpet growth (Castenholz 1961). Although we observed a 501 

general decline in algal density on plates with increasing temperature, we lack information on the 502 

species composition of the microalgal communities on the different plates, or their nutritional 503 

value. A second caveat is that our estimates of cumulative respiration are based only on rates for 504 

limpets at rest during a single acute exposure in air or seawater. Particularly following a high-505 

temperature aerial exposure, the post-exposure period during the next high tide may bring 506 

prolonged increased respiration rates to accommodate an increased metabolic demand needed for 507 

the heat-shock response that drives repair or degradation of damaged proteins (Dong et al. 2008, 508 

Bjelde & Todgham 2013).  There could also be a need to recover from anaerobic metabolism 509 

(Ellington 1983), though there is no evidence of anaerobic metabolic end product accumulation 510 

in L. digitalis from central California following aerial exposure (Bjelde & Todgham 2013). Due 511 

to these potential additional metabolic demands, our long-term estimates of cumulative 512 

respiration may underestimate the respired O2, particularly on days when temperatures do reach 513 

stressful levels during low tide, although this makes the pattern of increased growth rate in 514 

warmer microsites all the more surprising. Finally, it should be noted that the limpets utilized in 515 

these experiments represent sub-adult and small adult size classes, but we have no performance 516 

information for smaller limpets. Smaller limpets should have higher mass-specific metabolic 517 



rates and reduced energy stores relative to larger limpets, factors that may enhance the impacts of 518 

emersed temperature stress on newly recruited individuals (Davies 1966, Kiørboe & Hirst 2014). 519 

The thermal response curves measured here should be contrasted with the types of curves 520 

typically reported for organisms such as lizards or insects (Angilletta 2009). The peak in 521 

respiration we observe for limpet temperatures approaching 40 °C may have a different 522 

interpretation than a thermal performance curve representing other metrics such as feeding rate, 523 

locomotion speed, growth rate, or fecundity. For those other metrics, temperatures at the peak of 524 

the performance curve might well be the most desirable place to spend time from the standpoint 525 

of individual or population growth. In contrast, our measure of respiration rate, as a metric of 526 

metabolic rate and calorie consumption, is somewhat removed from true measures of organismal 527 

fitness. While we observe a peak in respiration at temperatures in the 32.5 to 37.5 °C range, it is 528 

not clear those temperatures necessarily represent a true “performance peak” or “optimum”, 529 

particularly as temperatures in this range are known to induce a heat shock response in limpets 530 

(Dong et al. 2008, Bjelde & Todgham 2013). Instead, for whole-organism fitness, limpet body 531 

temperatures slightly below the range of peak respiration rates may be closer to an optimum 532 

(Martin & Huey 2008), particularly if they avoid the risk and associated cost of a heat shock 533 

response but allow for faster catabolic and anabolic rates.  534 

Lottia limpets at HMS show a clear rise in respiration rate in response to rising body 535 

temperature during aerial emersion, and a quick decline in respiration as they reach extreme high 536 

temperatures that induce heat coma. The two high shore species, L. scabra and L. austrodigitalis, 537 

maintain slightly lower respiration rates during intermediate temperatures in the 20 to 30 °C 538 

range than their low shore counterparts, and have a higher CTmax, in line with the expectation 539 

that the frequency and severity of high temperature exposures should be higher in the upper 540 



littoral zone. In tracking growth over several months in the field, we see little evidence for 541 

decreased growth in microhabitats with higher temperature variability and attendant higher peak 542 

temperatures, despite estimated respiration demands being at least 5 to 14% higher, and in some 543 

cases we observe increased growth rates in warmer sites when food is abundant. The relatively 544 

short amount of total time encompassed by warm low tide exposures may have a small impact on 545 

growth rates, but when the majority of those exposures avoid stressful extreme temperatures, 546 

warmer microhabitats may be beneficial for intertidal consumers. Faster metabolic rates among 547 

limpets could drive increased grazing effort at high tide to support greater metabolic demand and 548 

increase growth rates, strengthening top-down control of microalgal density on the shore. 549 

However, given the negative relationship between warmer low tide temperatures and microalgal 550 

density observed in our grazer exclusion treatments, there is an opportunity for negative 551 

feedback on limpet growth if algal growth rates cannot support increased grazing pressure from 552 

limpets. Ultimately, the impacts of climate warming on energy transfer and growth rates in 553 

intertidal habitats will be determined by this interaction between rising temperatures and species’ 554 

individual temperature responses that are likely optimized for intermediate temperature ranges. 555 

The present day variation in temperature over small spatial scales in the intertidal (Denny et al. 556 

2011) encompasses conditions that could increase growth rates in some instances, but continuing 557 

warming of low tide aerial temperatures could begin to push organisms past their performance 558 

optima.  559 

 560 
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Tables 792 

 793 

Table 1. Estimated respiration break points and median heat coma temperatures (CTmax) for 794 

limpets held in air, with temperatures raised from 15 °C to a target temperature at 10 °C h-1 and 795 

held for 2 h. Because the peak respiration for L. scabra occurred at 37.5 °C, it was not possible 796 

to estimate a break point via piecewise regression from the single temperature above the peak. 797 

Species 

Respiration break point 

temperature (°C, ± 1SE) 

Critical Thermal 

Maximum (°C, ± 1SE) 

L. scabra NA 39.6 (± 0.9) 

L. austrodigitalis 34.2 (± 1.0) 38.8 (± 0.5) 

L. limatula 36.5 (± 0.4) 36.9 (± 0.5) 

L. pelta 34.4 (± 0.4) 34.6 (± 0.4) 

 798 

  799 



 800 

Table 2. Linear mixed effects model summary for limpet growth rate (mg day-1). Average daily 801 

maximum temperature during a census period, algal density (log-transformed dark-adapted 802 

fluorescence, Fo) at the start of a census period, and limpet species were treated as fixed factors. 803 

Random effects included log-transformed algal density, experimental plates, and individual 804 

limpets nested within experimental plates in order to account for nesting and repeated measures 805 

through time. The model accounts for first order autocorrelation among repeated measures using 806 

an AR(1) autoregressive structure.  807 

Treatment numDF denDF F P 

Average Daily Maximum (°C) 1 671 20.36 <0.001 

Algae density, Log (Fo) 1 671 17.20 <0.001 

Species 3 44 1.63 0.196 

Avg. Daily Max. × Algae density 1 671 37.50 <0.001 

Avg. Daily Max. × Species 3 671 4.84 0.002 

Algae density × Species 3 671 3.16 0.024 

Avg. Daily Max. × Algae density × Species 3 671 8.12 <0.001 

 808 
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 810 

Table 3. Temperature statistics for the single coolest and single warmest plate containing each 811 

limpet species in the field, and estimated cumulative respiration on the coolest and warmest plate 812 

over the course of the experiment from June to December 2013.   813 

 Cool Plate Warm Plate  

Species 

Average 

daily 

temperature 

range, °C 

Maximum 

temperature, 

°C 

Estimated 

cumulative 

respired 

oxygen, 

µmol 

Average 

daily 

temperature 

range, °C 

Maximum 

temperature, 

°C 

Estimated 

cumulative 

respired 

oxygen, 

µmol 

Estimated 

respiration 

increase 

L. scabra 3.3 26.0 1150 10.6 35.0 1314 14.3% 

L. austrodigitalis 2.9 23.0 1383 8.5 36.5 1456 5.3% 

L. limatula 2.4 21.5 2520 7.8 34.5 2732 8.4% 

L. pelta 2.9 24.5 2148 8.2 33.5 2363 10.0% 
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Figure legends 816 

Figure 1. A) A hypothetical temperature-performance curve, where some metric of performance 817 

(grazing rate, growth rate, etc.) climbs with increasing temperature towards a peak or plateau, 818 

and then drops off quickly as temperatures increase further. B) Kernel density estimates of 819 

limpet body temperatures from June through December 2013 at cool and warm microsites on the 820 

high shore at HMS (1.7 m above Mean Lower Low Water). The gray hatched region indicates 821 

the approximate portion of time spent at temperatures between 16.6 and 28 °C, which are above 822 

the warmest ocean temperature at the site, but below the range that typically induces a heat shock 823 

response in Lottia limpets (Dong et al. 2008). The solid gray region above 28 °C represents the 824 

temperature range where most Lottia exhibit a heat shock response. The samples include 3,939 825 

hours of data at two sites collected at 12 minute intervals, with the kernel bandwidth set at 0.6. 826 

Figure 2. A) Lottia limpets from central California. B) L. scabra and L. austrodigitalis are found 827 

in the high intertidal zone, while L. limatula and L. pelta are found in the low to middle intertidal 828 

zone. 829 

Figure 3. Respiration rates in air and seawater, and aerial respiration Q10 values for Lottia 830 

limpets. (A) Lottia limpet mass-specific aerial respiration rates (closed symbols) and aquatic 831 

respiration rates (open symbols) with 95% confidence intervals. The horizontal positions of the 832 

points have been staggered, but trials occurred at the temperatures indicated on the horizontal 833 

axis (n = 12 limpets per temperature). (B) Aerial respiration Q10 values for each temperature 834 

range, with bootstrapped 95% confidence intervals back-transformed from log-transformed 835 

samples. The upper confidence limit for L. scabra in the 10-15 °C range ( = 10.3) is cut off to 836 

improve the clarity of the plotted values.  837 



Figure 4. Algae dark adapted fluorescence, Fo (a proxy for algal density), on experimental plates 838 

versus limpet species treatment and average daily maximum temperature in the time period 839 

preceding each of six census dates between June and December 2013. Fitted lines are back-840 

transformed estimates from models fitted with log-transformed Fo values.  841 

Figure 5. Partial regression slopes (± 95% confidence limits shown in grey) from the linear 842 

model of limpet growth rate versus average daily maximum temperature during a census period, 843 

algal density (log Fo) at the start of a census period, and limpet species. Individual panels 844 

illustrate the fitted relationship between average daily maximum temperature (°C) and limpet 845 

growth rate (mg day-1), for each limpet species (rows) at 3 representative algal density values 846 

(left column, Fo = 25; center, Fo = 50; right column, Fo = 75). The rug of points on the horizontal 847 

axis represents the distribution of average daily maximum temperature values in the dataset.  848 

Figure 6. Estimated respiration rates for an average size L. scabra (18.5 mg dry tissue mass) 849 

living on the single warmest (red) and single coolest (blue) plate in the field experiment. A) 850 

Temperature records for the warmest and coolest plates in the field that held L. scabra. B). 851 

Estimated respiration rates for L. scabra on the warmest and coolest plates. A close up view of 852 

the three day time period represented by the grey box in (B) is shown in (C), along with the 853 

corresponding tides.  854 
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Figure 5. Partial regression slopes (± 95% confidence limits shown in grey) from the linear 890 

model of limpet growth rate versus average daily maximum temperature during a census period, 891 
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 897 

Figure 6. Estimated respiration rates for an average size L. scabra (18.5 mg dry tissue mass) 898 

living on the single warmest (red) and single coolest (blue) plate in the field experiment. A) 899 

Temperature records for the warmest and coolest plates in the field that held L. scabra. B). 900 

Estimated respiration rates for L. scabra on the warmest and coolest plates. A close up view of 901 

the three day time period represented by the grey box in (B) is shown in (C), along with the 902 

corresponding tides.  903 

  904 



Supplemental Tables 905 

Table S1. Dry tissue mass (mg) distributions of limpets used in the aerial and aquatic respiration 906 

trials (n = 12 per species per temperature).   907 

Species 
Mean dry tissue mass, 

mg (± 1SD) 
Minimum tissue 

mass, mg 
Maximum tissue 

mass, mg 

L. scabra 23.1 (± 9) 6.8 49.1 

L. austrodigitalis 29.0 (± 10) 12.0 63.7 
L. limatula 43.0 (± 20) 11.2 117.5 

L. pelta 32.5 (± 11) 12.3 69.7 
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Table S2. Results of generalized least squares model of log-transformed dark-adapted algal 910 

fluorescence values (Fo) versus average daily maximum temperature and limpet species 911 

(including the No Grazer treatment). The model included an AR(1) correlation structure for the 912 

Date of each reading (φ = 0.23). 913 

 914 

 numDf denomDF F P 

Intercept 1 350 21,225.4 < 0.001 
Avg. daily maximum temperature 1 350 104.3 < 0.001 

Species 4 350 80.8 < 0.001 
Avg. daily maximum × Species 4 350 1.89 0.111 
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Table S3. Treatment contrast coefficient estimates for the generalized least squares model of 917 

loge-transformed dark-adapted algal fluorescence values (Fo) versus average daily maximum 918 

temperature and limpet species (including the No Grazer treatment). The No Grazer treatment is 919 

the reference level. 920 

Coefficient Estimate Std. Error t-value P 

Intercept 6.422 0.327 19.73 <0.001 

Average daily maximum 

temperature -0.100 0.019 -5.32 <0.001 

L. scabra -0.722 0.425 -1.70 0.091 

L. austrodigitalis -1.402 0.446 -3.15 0.002 

L. limatula -0.411 0.442 -0.93 0.353 

L. pelta -0.746 0.434 -1.72 0.086 

Avg. daily max. ×  

L. scabra -0.013 0.024 -0.52 0.607 

Avg. daily max. ×  

L. austrodigitalis 0.043 0.026 1.67 0.097 

Avg. daily max. ×  

L. limatula -0.010 0.026 -0.39 0.698 

Avg. daily max. ×  

L. pelta -0.015 0.025 -0.58 0.565 

 921 
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Table S4. Coefficients for regressions of the form 𝑌 = 𝛼𝑋𝛽for limpet dry tissue mass or shell 924 

mass (mg) versus shell projected area (mm2) when viewed from overhead. R2 for linear fits to log 925 

transformed data are given, along with sample size n for each species.  926 

 Dry tissue mass Shell mass  

Species α β R2 α β R2 n 

L. scabra 0.0435 1.36 0.75 0.100 1.62 0.87 247 

L. austrodigitalis 0.0376 1.41 0.83 0.132 1.55 0.80 242 
L. limatula 0.0350 1.40 0.90 0.103 1.56 0.87 227 

L. pelta 0.1100 1.21 0.85 0.177 1.46 0.88 245 
  927 



Table S5. Treatment contrast coefficient estimates for the linear mixed effects model of limpet 928 

growth rate (mg day-1) with average daily maximum temperature during each census period, 929 

loge-transformed algal density (Fo) at the beginning of each census period, and limpet species as 930 

fixed factors. The random effects included loge-transformed Fo, an effect for plate (standard 931 

deviation of intercept = 2.23, log(Fo) = 0.60), and for individual limpets nested within plates to 932 

account for the repeated measures of limpets through time (standard deviation of intercept = 933 

0.99, log(Fo) = 0.28, residual = 0.74). First order autocorrelation among the repeated limpet 934 

measures through time is accounted for using an AR(1) autoregressive correlation structure (φ = 935 

0.22). The estimate for L. scabra is the reference level in the model. The model was fit using the 936 

nlme package (Pinheiro and Bates, 2000). 937 

Coefficient Estimate Std. Error df t-value P 

Intercept 8.865 2.508 671 3.535 <0.001 

Average daily maximum temperature, °C -0.847 0.133 671 -6.382 <0.001 

Log (Fo) -3.402 0.650 671 -5.231 <0.001 

L. austrodigitalis -8.846 4.056 44 -2.181 0.035 

L. limatula -3.350 4.245 44 -0.789 0.434 

L. pelta -4.779 4.293 44 -1.113 0.272 

Avg. daily max. × Log(Fo) 0.300 0.035 671 8.684 <0.001 

Avg. daily max. × L. austrodigitalis 0.785 0.219 671 3.581 <0.001 
Avg. daily max. × L. limatula 0.435 0.233 671 1.868 0.062 

Avg. daily max. × L. pelta 0.569 0.242 671 2.352 0.019 
Log(Fo) × L. austrodigitalis 3.085 1.040 671 2.966 0.003 
Log(Fo) × L. limatula 1.802 1.053 671 1.711 0.088 

Log(Fo) × L. pelta 1.948 1.150 671 1.694 0.091 
Avg. daily max. × Log(Fo) × 

L. austrodigitalis -0.255 0.057 671 -4.504 <0.001 
Avg. daily max. × Log(Fo) × L. limatula -0.178 0.059 671 -3.018 0.003 
Avg. daily max. × Log(Fo) × L. pelta -0.197 0.066 671 -2.983 0.003 
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