181 research outputs found

    The effect of time-dependent macromolecular crowding on the kinetics of protein aggregation: a simple model for the onset of age-related neurodegenerative disease

    Get PDF
    A linear increase in the concentration of inert macromolecules with time is incorporated into simple excluded volume models for protein condensation or fibrillation. Such models predict a long latent period during which no significant amount of protein aggregates, followed by a steep increase in the total amount of aggregate. The elapsed time at which these models predict half-conversion of model protein to aggregate varies by less than a factor of two when the intrinsic rate constant for condensation or fibril growth of the protein is varied over many orders of magnitude. It is suggested that this concept can explain why the symptoms of neurodegenerative diseases associated with the aggregation of very different proteins and peptides appear at approximately the same advanced age in humans

    Non-specific Interactions Between Macromolecular Solutes in Concentrated Solution: Physico-Chemical Manifestations and Biochemical Consequences

    Get PDF
    A general thermodynamic formulation of the effect of hard and soft non-specific intermolecular interactions upon reaction equilibria is summarized. A highly simplified quantitative model for non-specific intermolecular interaction is introduced. This model is used to illustrate how the magnitudes of attractive and repulsive components of the overall intermolecular interaction, and the balance between them, influence the concentration-dependent properties of a highly concentrated solution of a single macromolecular solute. The properties calculated using the results of computer simulation and an approximate analytical model are found to agree qualitatively with the results of experimental measurements on protein solutions over a broad range of concentration

    Effects of ionic strength on the regulation of Na/H exchange and K-Cl cotransport in dog red blood cells

    Get PDF
    Dog red cell membranes contain two distinct volume-sensitive transporters: swelling-activated K-Cl cotransport and shrinkage- activated Na/H exchange. Cells were prepared with intracellular salt concentration and weight percentage of cell water (%cw) varied independently by transient permeabilization of the cell membrane to cations. The dependence of transporter-mediated Na and K influxes upon %cw and upon extracellular salt concentration (c(ext)) was measured in cells so prepared. It was found that the critical value of %cw at which transporters are activated, called the set point, is similar for the two transporters, and that the set points for the two transporters decrease similarly with increasing extracellular salt concentration. These findings suggest a common mechanism of regulation of these two transporters. Cellular Na, K, and Cl concentrations were measured as functions of %cw and c(ext). Using these data together with data from the literature for other solute concentrations, empirical expressions were developed to describe the dependence of the intracellular concentrations of all significant small molecule electrolytes, and therefore the intracellular ionic strength, upon %cw and c(ext). A mechanistic model for the dependence of the set point of an individual transporter upon intracellular ionic strength is proposed. According to this model, the set point represents a critical extent of association between the transporter and a postulated soluble regulatory protein, called regulator. Model functions are presented for the calculation of the thermodynamic activity of regulator, and hence extent of regulator- transporter association, as a function of total intracellular protein concentration (or %cw) and ionic strength. The experimentally observed dependence of set point %cw on c(ext) are simulated using these functions and the empirical expressions described above, together with reasonable but not uniquely determined values of model parameters

    A Didactic Model of Macromolecular Crowding Effects on Protein Folding

    Get PDF
    A didactic model is presented to illustrate how the effect of macromolecular crowding on protein folding and association is modeled using current analytical theory and discrete molecular dynamics. While analytical treatments of crowding may consider the effect as a potential of average force acting to compress a polypeptide chain into a compact state, the use of simulations enables the presence of crowding reagents to be treated explicitly. Using an analytically solvable toy model for protein folding, an approximate statistical thermodynamic method is directly compared to simulation in order to gauge the effectiveness of current analytical crowding descriptions. Both methodologies are in quantitative agreement under most conditions, indication that both current theory and simulation methods are capable of recapitulating aspects of protein folding even by utilizing a simplistic protein model

    Self-help groups challenge health care systems in the US and UK

    Get PDF
    Purpose: This research considers how self-help groups (SHGs) and self- help organizations (SHOs) contribute to consumerist trends in two different societies: United States and United Kingdom. How do the health care systems and the voluntary sectors affect the kinds of social changes that SHGs/SHOs make? Methodology/approach: A review of research on the role of SHGs/SHOs in contributing to national health social movements in the UK and US was made. Case studies of the UK and the US compare the characteristics of their health care systems and their voluntary sector. Research reviews of two community level self-help groups in each country describe the kinds of social changes they made. Findings: The research review verified that SHGs/SHOs contribute to national level health social movements for patient consumerism. The case studies showed that community level SHGs/SHOs successfully made the same social changes but on a smaller scale as the national movements, and the health care system affects the kinds of community changes made. Research limitations: A limited number of SHGs/SHOs within only two societies were studied. Additional SHGs/SHOs within a variety of societies need to be studied. Originality/value of chapter Community SHGs/SHOs are often trivialized by social scientists as just inward-oriented support groups, but this chapter shows that local groups contribute to patient consumerism and social changes but in ways that depend on the kind of health care system and societal context

    Resources for sports engineering education

    Get PDF
    This paper serves as a resource guide for Sports Engineering educators. The paper covers key topics in Sports Engineering, including ball impact, friction, safety and materials. A variety of resource types are presented to reflect modern methods of learning and searching for information, including textbooks, research and review papers, websites and videos. The field could benefit from more resources specifically designated for teaching Sports Engineering, particularly textbooks

    The impact of viral mutations on recognition by SARS-CoV-2 specific T cells.

    Get PDF
    We identify amino acid variants within dominant SARS-CoV-2 T cell epitopes by interrogating global sequence data. Several variants within nucleocapsid and ORF3a epitopes have arisen independently in multiple lineages and result in loss of recognition by epitope-specific T cells assessed by IFN-γ and cytotoxic killing assays. Complete loss of T cell responsiveness was seen due to Q213K in the A∗01:01-restricted CD8+ ORF3a epitope FTSDYYQLY207-215; due to P13L, P13S, and P13T in the B∗27:05-restricted CD8+ nucleocapsid epitope QRNAPRITF9-17; and due to T362I and P365S in the A∗03:01/A∗11:01-restricted CD8+ nucleocapsid epitope KTFPPTEPK361-369. CD8+ T cell lines unable to recognize variant epitopes have diverse T cell receptor repertoires. These data demonstrate the potential for T cell evasion and highlight the need for ongoing surveillance for variants capable of escaping T cell as well as humoral immunity.This work is supported by the UK Medical Research Council (MRC); Chinese Academy of Medical Sciences(CAMS) Innovation Fund for Medical Sciences (CIFMS), China; National Institute for Health Research (NIHR)Oxford Biomedical Research Centre, and UK Researchand Innovation (UKRI)/NIHR through the UK Coro-navirus Immunology Consortium (UK-CIC). Sequencing of SARS-CoV-2 samples and collation of data wasundertaken by the COG-UK CONSORTIUM. COG-UK is supported by funding from the Medical ResearchCouncil (MRC) part of UK Research & Innovation (UKRI),the National Institute of Health Research (NIHR),and Genome Research Limited, operating as the Wellcome Sanger Institute. T.I.d.S. is supported by a Well-come Trust Intermediate Clinical Fellowship (110058/Z/15/Z). L.T. is supported by the Wellcome Trust(grant number 205228/Z/16/Z) and by theUniversity of Liverpool Centre for Excellence in Infectious DiseaseResearch (CEIDR). S.D. is funded by an NIHR GlobalResearch Professorship (NIHR300791). L.T. and S.C.M.are also supported by the U.S. Food and Drug Administration Medical Countermeasures Initiative contract75F40120C00085 and the National Institute for Health Research Health Protection Research Unit (HPRU) inEmerging and Zoonotic Infections (NIHR200907) at University of Liverpool inpartnership with Public HealthEngland (PHE), in collaboration with Liverpool School of Tropical Medicine and the University of Oxford.L.T. is based at the University of Liverpool. M.D.P. is funded by the NIHR Sheffield Biomedical ResearchCentre (BRC – IS-BRC-1215-20017). ISARIC4C is supported by the MRC (grant no MC_PC_19059). J.C.K.is a Wellcome Investigator (WT204969/Z/16/Z) and supported by NIHR Oxford Biomedical Research Centreand CIFMS. The views expressed are those of the authors and not necessarily those of the NIHR or MRC
    • …
    corecore