3,691 research outputs found

    Detailed studies of the subpicosecond kinetics in the primary electron transfer of reaction centers of Rhodopseudomonas viridis

    Get PDF
    The primary, light-induced charge separation in reaction centers of Rhodopseudomonas viridis is investigated with femtosecond time resolution. The absorption changes after direct excitation of the primary donor P at 955 nm are investigated in the time range from 100 fs to 600 ps. The experimental data, taken at various probing wavelengths, reveal one subpicosecond and two picosecond time constants: 0.65 ± 0.2 ps, 3.5 ± 0.4 ps, and 200 ± 20 ps. The previously undetected 0.65 ps kinetics can be observed clearly in the spectral range of the Qx and Qy transitions of the monomeric bacteriochlorophylls. The experimental data support the idea that the accessory bacteriochlorophyll B A participates in the electron-transfer process. Reference

    Getting It on Record: Issues and Strategies for Ethnographic Practice in Recording Studios

    Get PDF
    The recording studio has been somewhat neglected as a site for ethnographic fieldwork in the field of ethno-musicology and, moreover, the majority of published studies tend to overlook the specific concerns faced by the researcher within these contexts. Music recording studios can be places of creativity, artistry, and collaboration, but they often also involve challenging, intimidating, and fractious relations. Given that recording studios are, first and foremost, concerned with documenting musicians’ performances, we discuss the concerns of getting studio interactions “on record” in terms of access, social relations, and methods of data collection. This article reflects on some of the issues we faced when conducting our fieldwork within British music recording facilities and makes suggestions based on strategies that we employed to address these issues

    Amygdala Nuclei Volumes Are Selectively Associated With Social Network Size in Homeless and Precariously Housed Persons

    Get PDF
    Objective: The amygdala is a brain region comprised of a group of functionally distinct nuclei that play a central role in social behavior. In homeless and precariously housed individuals, high rates of multimorbidity, and structural aspects of the environment may dysregulate social functioning. This study examined the neurobiological substrates of social connection in homeless and precariously housed persons by examining associations between amygdala nuclei volumes and social network size. Methods: Sixty participants (mean age 43.6 years; 73.3% male) were enrolled from an ongoing study of homeless and precariously housed adults in Vancouver, Canada. Social network size was assessed using the Arizona Social Support Interview Schedule. Amygdala nuclei volumes were extracted from anatomic T1-weighted MRI data. The central and basolateral amygdala nuclei were selected as they are implicated in anxiety-related and social behaviors. The hippocampus was included as a control brain region. Multivariable regression analysis investigated the relationship between amygdala nuclei volumes and social network size. Results: After controlling for age, sex, and total brain volume, individuals with the larger amygdala and central nucleus volumes had a larger network size. This association was not observed for the basolateral amygdala complex, though subsequent analysis found the basal and accessory basal nuclei of the basolateral amygdala were significantly associated with social network size. No association was found for the lateral amygdala nucleus or hippocampus. Conclusions: These findings suggest that select amygdala nuclei may be differentially involved in the social connections of persons with multimorbid illness and social marginalization

    On religion and cultural policy: notes on the Roman Catholic Church

    Get PDF
    This paper argues that religious institutions have largely been neglected within the study of cultural policy. This is attributed to the inherently secular tendency of most modern social sciences. Despite the predominance of the ‘secularisation paradigm’, the paper notes that religion continues to promote powerful attachments and denunciations. Arguments between the ‘new atheists’, in particular, Richard Dawkins, and their opponents are discussed, as is Habermas’s conciliatory encounter with Joseph Ratzinger (later Pope Benedict XVI). The paper then moves to a consideration of the Roman Catholic Church as an agent of cultural policy, whose overriding aim is the promotion of ‘Christian consciousness’. Discussion focuses on the contested meanings of this, with reference to (1) the deliberations of Vatican II and (2) the exercise of theological and cultural authority by the Pope and the Congregation for the Doctrine of the Faith (CDF). It is argued that these doctrinal disputes intersect with secular notions of social and cultural policy and warrant attention outside the specialist realm of theological discourse

    Point-Form Analysis of Elastic Deuteron Form Factors

    Full text link
    Point-form relativistic quantum mechanics is applied to elastic electron-deuteron scattering. The deuteron is modeled using relativistic interactions that are scattering-equivalent to the nonrelativistic Argonne v18v_{18} and Reid '93 interactions. A point-form spectator approximation (PFSA) is introduced to define a conserved covariant current in terms of single-nucleon form factors. The PFSA is shown to provide an accurate description of data up to momentum transfers of 0.5 GeV2{\rm GeV}^2, but falls below the data at higher momentum transfers. Results are sensitive to the nucleon form factor parameterization chosen, particularly to the neutron electric form factor.Comment: RevTex, 31 pages, 1 table, 13 figure

    BOUT++ : Recent and current developments

    Get PDF
    BOUT++ is a 3D nonlinear finite-difference plasma simulation code, capable of solving quite general systems of PDEs, but targeted particularly on studies of the edge region of tokamak plasmas. BOUT++ is publicly available, and has been adopted by a growing number of researchers worldwide. Here we present improvements which have been made to the code since its original release, both in terms of structure and its capabilities. Some recent applications of these methods are reviewed, and areas of active development are discussed. We also present algorithms and tools which have been developed to enable creation of inputs from analytic expressions and experimental data, and for processing and visualisation of output results. This includes a new tool Hypnotoad for the creation of meshes from experimental equilibria. Algorithms have been implemented in BOUT++ to solve a range of linear algebraic problems encountered in the simulation of reduced MHD and gyro-fluid models: A preconditioning scheme is presented which enables the plasma potential to be calculated efficiently using iterative methods supplied by the PETSc library, without invoking the Boussinesq approximation. Scaling studies are also performed of a linear solver used as part of physics-based preconditioning to accelerate the convergence of implicit time-integration schemes

    Gender and sexual orientation differences in cognition across adulthood : age is kinder to women than to men regardless of sexual orientation

    Get PDF
    Despite some evidence of greater age-related deterioration of the brain in males than in females, gender differences in rates of cognitive aging have proved inconsistent. The present study employed web-based methodology to collect data from people aged 20-65 years (109,612 men; 88,509 women). As expected, men outperformed women on tests of mental rotation and line angle judgment, whereas women outperformed men on tests of category fluency and object location memory. Performance on all tests declined with age but significantly more so for men than for women. Heterosexuals of each gender generally outperformed bisexuals and homosexuals on tests where that gender was superior; however, there were no clear interactions between age and sexual orientation for either gender. At least for these particular tests from young adulthood to retirement, age is kinder to women than to men, but treats heterosexuals, bisexuals, and homosexuals just the same

    Electron Dynamics in Nd1.85_{1.85}Ce.15_{.15}CuO4+δ_{4+\delta}: Evidence for the Pseudogap State and Unconventional c-axis Response

    Full text link
    Infrared reflectance measurements were made with light polarized along the a- and c-axis of both superconducting and antiferromagnetic phases of electron doped Nd1.85_{1.85}Ce.15_{.15}CuO4+δ_{4+\delta}. The results are compared to characteristic features of the electromagnetic response in hole doped cuprates. Within the CuO2_2 planes the frequency dependent scattering rate, 1/τ(ω)\tau(\omega), is depressed below \sim 650 cm1^{-1}; this behavior is a hallmark of the pseudogap state. While in several hole doped compounds the energy scales associated with the pseudogap and superconducting states are quite close, we are able to show that in Nd1.85_{1.85}Ce.15_{.15}CuO4+δ_{4+\delta} the two scales differ by more than one order of magnitude. Another feature of the in-plane charge response is a peak in the real part of the conductivity, σ1(ω)\sigma_1(\omega), at 50-110 cm1^{-1} which is in sharp contrast with the Drude-like response where σ1(ω)\sigma_1(\omega) is centered at ω=0\omega=0. This latter effect is similar to what is found in disordered hole doped cuprates and is discussed in the context of carrier localization. Examination of the c-axis conductivity gives evidence for an anomalously broad frequency range from which the interlayer superfluid is accumulated. Compelling evidence for the pseudogap state as well as other characteristics of the charge dynamics in Nd1.85_{1.85}Ce.15_{.15}CuO4+δ_{4+\delta} signal global similarities of the cuprate phase diagram with respect to electron and hole doping.Comment: Submitted to PR

    An ethical framework for global vaccine allocation

    Get PDF
    In this article, we propose the Fair Priority Model for COVID-19 vaccine distribution, and emphasize three fundamental values we believe should be considered when distributing a COVID-19 vaccine among countries: Benefiting people and limiting harm, prioritizing the disadvantaged, and equal moral concern for all individuals. The Priority Model addresses these values by focusing on mitigating three types of harms caused by COVID-19: death and permanent organ damage, indirect health consequences, such as health care system strain and stress, as well as economic destruction. It proposes proceeding in three phases: the first addresses premature death, the second long-term health issues and economic harms, and the third aims to contain viral transmission fully and restore pre-pandemic activity. To those who may deem an ethical framework irrelevant because of the belief that many countries will pursue "vaccine nationalism," we argue such a framework still has broad relevance. Reasonable national partiality would permit countries to focus on vaccine distribution within their borders up until the rate of transmission is below 1, at which point there would not be sufficient vaccine-preventable harm to justify retaining a vaccine. When a government reaches the limit of national partiality, it should release vaccines for other countries. We also argue against two other recent proposals. Distributing a vaccine proportional to a country's population mistakenly assumes that equality requires treating differently situated countries identically. Prioritizing countries according to the number of front-line health care workers, the proportion of the population over 65, and the number of people with comorbidities within each country may exacerbate disadvantage and end up giving the vaccine in large part to wealthy nations

    Estimation of Ligament Loading and Anterior Tibial Translation in Healthy and ACL-Deficient Knees During Gait and the Influence of Increasing Tibial Slope Using EMG-Driven Approach

    Get PDF
    The purpose of this study was to develop a biomechanical model to estimate anterior tibial translation (ATT), anterior shear forces, and ligament loading in the healthy and anterior cruciate ligament (ACL)-deficient knee joint during gait. This model used electromyography (EMG), joint position, and force plate data as inputs to calculate ligament loading during stance phase. First, an EMG-driven model was used to calculate forces for the major muscles crossing the knee joint. The calculated muscle forces were used as inputs to a knee model that incorporated a knee–ligament model in order to solve for ATT and ligament forces. The model took advantage of using EMGs as inputs, and could account for the abnormal muscle activation patterns of ACL-deficient gait. We validated our model by comparing the calculated results with previous in vitro, in vivo, and numerical studies of healthy and ACL-deficient knees, and this gave us confidence on the accuracy of our model calculations. Our model predicted that ATT increased throughout stance phase for the ACL-deficient knee compared with the healthy knee. The medial collateral ligament functioned as the main passive restraint to anterior shear force in the ACL-deficient knee. Although strong co-contraction of knee flexors was found to help restrain ATT in the ACL-deficient knee, it did not counteract the effect of ACL rupture. Posterior inclination angle of the tibial plateau was found to be a crucial parameter in determining knee mechanics, and increasing the tibial slope inclination in our model would increase the resulting ATT and ligament forces in both healthy and ACL-deficient knees
    corecore