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Objective: The amygdala is a brain region comprised of a group of functionally distinct
nuclei that play a central role in social behavior. In homeless and precariously housed
individuals, high rates of multimorbidity, and structural aspects of the environment
may dysregulate social functioning. This study examined the neurobiological substrates
of social connection in homeless and precariously housed persons by examining
associations between amygdala nuclei volumes and social network size.

Methods: Sixty participants (mean age 43.6 years; 73.3% male) were enrolled from
an ongoing study of homeless and precariously housed adults in Vancouver, Canada.
Social network size was assessed using the Arizona Social Support Interview Schedule.
Amygdala nuclei volumes were extracted from anatomic T1-weighted MRI data. The
central and basolateral amygdala nuclei were selected as they are implicated in anxiety-
related and social behaviors. The hippocampus was included as a control brain region.
Multivariable regression analysis investigated the relationship between amygdala nuclei
volumes and social network size.

Results: After controlling for age, sex, and total brain volume, individuals with the larger
amygdala and central nucleus volumes had a larger network size. This association was
not observed for the basolateral amygdala complex, though subsequent analysis found
the basal and accessory basal nuclei of the basolateral amygdala were significantly
associated with social network size. No association was found for the lateral amygdala
nucleus or hippocampus.

Conclusions: These findings suggest that select amygdala nuclei may be differentially
involved in the social connections of persons with multimorbid illness and social
marginalization.
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INTRODUCTION

Humans are inherently social beings. Research suggests that
social connectedness or the feeling of belonging to a group is
associated with better overall health and a decreased burden
on the healthcare system (Uchino, 2006), whereas social
isolation has been linked with greater cognitive decline and
increased risk for Alzheimer’s disease (Wilson et al., 2007).
Social network characteristics such as size and network density
(interconnectedness among members) have been associated with
frequency of hospitalization (Clinton et al., 1998), as well as
overall mental and psychological health (Saeri et al., 2018).
Social networks may be particularly important in homeless and
precariously housed individuals, as the network composition
and structure modifies life experiences, and affects access to
support from network members, shelters, and other support
providers (Green et al., 2013). Unfortunately, homeless and
precariously housed persons typically have small and fragmented
social networks and are highly susceptible to social isolation
and loneliness (Hawkins and Abrams, 2007; Crawley et al.,
2013; Bower et al., 2018). Although the cause of social isolation
in this population is likely to be complex and multifaceted,
evidence suggests that the amygdala is an important brain
structure supporting social life in humans, and may play a role
in maintaining social connection (Bickart et al., 2011, 2014).

Early experiments implicating the amygdala in social
functions noted peculiar behavioral manifestations associated
with bilateral removal of the anterior temporal lobes in primates
(Klüver and Bucy, 1939), many of which were later credited to
bilateral amygdala ablation. The amygdala is an important hub
of the limbic system, and plays a key role in the processing of
emotions. It has traditionally been described as being involved
in fear-related processes, but more recent evidence has pointed
to the amygdala’s broader contributions to a host of other
complex neurobiological processes, including susceptibility to
addiction (Luo et al., 2013), social judgment (Adolphs et al.,
1998), social interaction (Adolphs, 2010), and decision-making
(Jenison, 2014). Animal and human studies have identified
the amygdala as an important structure for mediating social
behavior, and part of a collection of brain networks that support
social life (Bickart et al., 2014). It has been posited that subjective
perception of social support is related to amygdala volume and
structure (Sato et al., 2016) and that larger amygdala volume is
related to larger and more complex social networks in humans
(Bickart et al., 2011).

The amygdala is comprised of a collection of nuclei
that are distinguishable based on morphology, histochemistry,
cytoarchitecture, and connectivity (Sah et al., 2003; LeDoux,
2007; Bach et al., 2011). A simplified model of information
flow suggests the basolateral nucleus complex (consisting of
the lateral, basal, and accessory basal nuclei) serves as the
principal input region of the amygdala (LeDoux, 2007). The
lateral nucleus is themajor input nucleus for sensory information
entering the amygdala, with the basal and accessory basal
nuclei also acting as parallel input pathways (Manassero et al.,
2018). Output connections from the basal nucleus are involved
in controlling behavioral responses to stressful situations via

connections with the striatum, and together (as part of the
basolateral complex) have shown to be involved in social
behaviors (LeDoux, 2007; Wellman et al., 2016). The central
nucleus serves as the main output nucleus of the amygdala
complex (LeDoux, 2007; Janak and Tye, 2015), receiving both
direct and indirect (via the basal and accessory basal nuclei)
projections from the lateral nucleus (Figure 1; Anglada-Figueroa
and Quirk, 2005). The central nucleus has also been implicated
in a host of anxiety-related and social behaviors in monkeys
(Wellman et al., 2016), and output connections of the central
nucleus to the brainstem are involved in controlling emotional
reactions (LeDoux, 2007). Studies in primates have identified
the central nucleus and basolateral nucleus complex as being
important regions involved in regulating social behaviors and
social network dynamics (Wellman et al., 2016), though to
our knowledge no studies have explored these associations
in humans.

The primary aim of this study was to examine the
associations between select amygdala nuclei volumes and social
network size in a group of homeless and precariously housed
persons. These individuals live in a challenging environment
where social networks play a critical role in accessing scarce
resources. Persons in this environment are known to have
small, fragmented networks (Hawkins and Abrams, 2007; Bower
et al., 2018; Knerich et al., 2019), leading to social isolation
and a variety of health complications (Seeman, 1996). Further,
marginalized persons are exposed to a variety of risk factors
(e.g., substance use, trauma) that are known to compromise
the structural and functional integrity of the amygdala (Breiter
et al., 1997; Morey et al., 2012). Recently, our group reported
that patterns of substance use in precariously housed persons
are related to the structure of their social network (Knerich
et al., 2019). Such risk exposures may degrade amygdala-
related functions that maintain a supportive social network, thus
warranting further exploration of the amygdala as a potential
neurobiological substrate for degraded social networks in a
vulnerable population.

We hypothesized that smaller central nucleus and basolateral
nucleus complex volumes would be associated with smaller
social network size. These nuclei reflect the main input and
output pathways of the amygdala and have been associated
with a host of social behaviors (LeDoux, 2007; Fudge and
Tucker, 2009; Wellman et al., 2016). Similar to prior work, the
hippocampus was included as a control brain region (Bickart
et al., 2011). In contrast to the amygdala, the hippocampal
function is strongly linked with learning and memory, emotion,
and spatial navigation and is not directly implicated in social
behaviors and network formation. To our knowledge, this is
the first study to investigate the relationship between amygdala
nuclei volumes and social network size in humans.

MATERIALS AND METHODS

Participants
The Hotel Study is an ongoing 10-year longitudinal investigation
of multimorbidity in homeless and precariously housed
people living in an impoverished downtown neighborhood
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FIGURE 1 | Amygdala segmentation boundaries and a simplified schematic of information processing among select nuclei.

of Vancouver, Canada (Vila-Rodriguez et al., 2013;
Honer et al., 2017). Between November of 2008 and September
2010, of a potential 341 tenants, 246 (72%) individuals were
recruited from four single room occupancy (SRO) hotels located
in the neighborhood (Honer et al., 2017). During the interval
used to establish the social network (November 1, 2009, to
September 30, 2010), 201 of 246 (82%) participants provided
social network data. Sixty participants had at least one social
network connection and valid MRI data. All participants were
18 years or older, fluent in English, and provided written
informed consent, which included consent to communicate
clinically significant findings to participants’ physicians, and
received honoraria. Approvals were obtained from the Clinical
Research Ethics Boards of the University of British Columbia
and Simon Fraser University.

Social Network
Social support relationships were assessed using the Arizona
Social Support Interview Schedule (ASSIS; Barrera, 1980). The
ASSIS is a structured interview designed to assess a range of
social support categories, including: (1) intimate interaction;
(2) material aid; (3) physical assistance; (4) guidance; (5) social
participation; and (6) positive feedback, and was previously
used to study social network topology in this sample (Knerich
et al., 2019). In brief, participants (ego) were prompted to
report the names and identifying information of all individuals
that provided social support in the past month. Supporters
(alters) were identified as Hotel Study participants themselves
by name, demographic information, longitudinal relational
data, and verification by study staff with significant experience
in the community. This yields a measure of total network
size, defined as the number of people providing at least one
supportive function.

A sociogram was constructed to represent the social support
relationships between participants enrolled in the Hotel Study.
Nodes represent individuals and the edges represent social
support relationships between two individuals. For the primary
analysis, participants with at least one supportive connection
(edge) in the network were included. For the supplementary
analysis, we examined the (egocentric) personal support
networks of each participant by including all social support
relationships listed by the participants.

Clinical Measures
Demographic variables (age, sex, education, ethnicity) were
self-reported during a structured baseline interview. To
measure psychiatric symptoms, the Positive and Negative
Syndrome Scale (PANSS; Kay et al., 1987) was administered
by trained research assistants and psychiatrists. Psychiatric
diagnoses were determined via consensus using the Best
Estimate Clinical Evaluation and Diagnosis (Endicott, 1988),
the Mini-International Neuropsychiatric Interview (Sheehan
et al., 1998), and a mental status examination, following criteria
in the Diagnostic and Statistical Manual of Mental Disorders
(4th ed., text rev.; American Psychiatric Association, 2000).
Blood samples were drawn and submitted for serological testing
for HIV and hepatitis C. Everyday functioning was indexed with
the Role Functioning Scale (RFS; Goodman et al., 1993) and the
Social and Occupational Functioning Assessment Scale (SOFAS;
Morosini et al., 2000). Self-reported history of traumatic brain
injury (TBI) was recorded by asking participants if they had ever
sustained a serious head or face injury. TBI was then defined
as participants who responded ‘‘yes’’ and endorsed post-injury
symptoms of either loss of consciousness, confusion, and/or
memory loss.

Neuroimaging Processing and Acquisition
Whole-brain T1-weighted anatomic images were obtained using
a Philips 3T Achieva scanner equipped with an eight-channel
SENSE-Head coil and using a 3D FFE T1-weighted structural
sequence applied in the sagittal plane with 190 1-mm thick slices
(TR/TE = 7.6/3.5 ms; acquisition matrix = 256 × 250; the field of
view = 256mm; flip angle = 8◦; total acquisition time = 7:23min).
Images were visually inspected for significant motion artifact by
trained raters (DJL, WS).

Amygdala nuclei were measured by quantitative
morphometric analysis of T1-weighted MRI data using an
automated segmentation protocol from FreeSurfer v6.01 with
a procedure that uses Bayesian inference with a probabilistic
atlas derived from manual delineations of the amygdala
using ultra-high-resolution ex vivo MRI scans (Saygin et al.,
2017). Bilateral whole amygdala and hippocampal volumes
were measured using an automated protocol from FreeSurfer
v6.0. The automated segmentation of amygdala nuclei has

1http://surfer.nmr.mgh.harvard.edu/
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been validated for standard resolution T1 data of varying
MR contrast. The approach takes individual underlying
anatomy into account, thus providing greater spatial sensitivity
(Saygin et al., 2017). Segmentations were visually inspected
for failures and manually corrected where necessary. All
neuroimaging was completed within 1 year of social network
data collection.

Statistical Analysis
A flow chart is detailed in Supplementary Figure S1 to show
how the sample was derived for the final statistical analyses,
which were carried out with SPSS software (version 21.0;
SPSS, Inc., Chicago, IL, USA). Social network construction
and analytics were performed using the igraph package for
R, version 3.5.0 (R Core Team, 2018). Network characteristics
included degree centrality and assortativity. Degree centrality
refers to the number of connections a node (an individual
within the network) has to other nodes, whereas network
homophily (also known as the assortativity coefficient) refers
to the phenomenon whereby individuals are more likely to
associate with others who share similar attributes. Assortativity is
calculated as the fraction of connections between dissimilar and
similar nodes. Sociodemographic factors (SRO residence, age,
sex), total amygdala volume, and select nuclei were examined in
assortativity calculations.

Multiple linear regression analyses were conducted to
investigate the relationship between amygdala nuclei volumes
and degree centrality using separate models for each region
of interest to avoid multicollinearity. Independent variables
included: amygdala nuclei volumes (central and basolateral
nucleus), whole amygdala and hippocampal volumes, which were
divided by total brain volume for each participant to adjust
for head size. The lateral, basal, and accessory basal nuclei
were summed to represent the basolateral amygdala complex.
The association of each nucleus of the basolateral complex to
social connection was subsequently examined in supplementary
analyses. For individuals with at least one connection, social
network degree centrality was entered as the dependent variable.

To capture differences between participants connected to a
larger network in our sample vs. those who are more isolated,
the amygdala and hippocampal volumes were compared between
participants with greater than one connection and participants
with only one connection using independent sample t-tests.
In a supplementary analysis, we repeated the multiple linear
regressions as outlined above using degree measured as all
connections listed for each of the 60 participants, regardless of
status as participants in the Hotel Study (i.e., connections not
included in social network analysis). Age and sex were included
as covariates. Given specific a priori hypotheses, no corrections
were applied for multiple comparisons. Follow-up hierarchical
linear regression analysis was conducted to investigate the unique
effects of each nucleus on the social network connection.

RESULTS

The final sample included 60 participants who completed
the ASSIS social network questionnaire and imaging

(Supplementary Figure S1). No differences were found in
demographic variables between participants with greater
than one connection and participants with only one
connection (Table 1). Among the clinical variables, a higher
rate of methamphetamine dependence among individuals
with greater than one connection was the only observed
difference (χ2 = 5.158, p = 0.023). Using paired samples
t-tests, total network size was shown to be stable across
the first 18 months of the larger ongoing Hotel Study
(baseline to 6 months: t = 0.06, p = 0.953; 6 months to
12 months: t = −0.54, p = 0.590; 12 months to 18 months:
t = 0.174, p = 0.863).

Individuals who reside in the same SRO hotel are much
more likely to form a social connection than those residing
in different hotels (housing assortativity coefficient = 0.984;
Figure 2). Ethnicity (assortativity coefficient = 0.212) and
gender (assortativity coefficient = 0.016) homophily was not
observed, nor was it observed for total amygdala (network
homophily = 0.321), or central (network homophily = 0.076),
basal (network homophily = 0.316), accessory basal (network
homophily = 0.258) or lateral (network homophily = 0.282)
nuclei volumes.

Assumptions of multivariate normality, multicollinearity, and
homoscedasticity were deemed met. One univariate outlier
on social network connections was identified and adjusted
by assigning that case a value of one unit larger than
the next most extreme value, as suggested by Tabachnick
and Fidell (2013). Adjusted values are reported here. After
accounting for total brain volume, individuals with larger
total amygdala (β = 0.315, p = 0.031) and central nucleus
volumes (β = 0.330, p = 0.010) had significantly larger network
size (Table 2). Significant associations were not observed for
the basolateral amygdala complex (β = 0.237, p = 0.090),
or hippocampus (β = 0.205, p = 0.126). Further analysis
revealed that basal nucleus (β = 0.331, p = 0.021) and
accessory basal nucleus (β = 0.319, p = 0.021) volumes were
significantly associated with larger network size, but not the
lateral nucleus (β = 0.076, p = 0.573; Supplementary Table
S1). Interactions between brain volumes and covariates (age and
gender) were not significant and were not included in any of the
final models.

Secondary analysis using the total number of personal
support network members as the dependent variable showed no
significant association between central (β = −0.160, p = 0.231),
basal (β = −0.134, p = 0.366), accessory basal (β = −0.257,
p = 0.070), or lateral (β = −0.123, p = 0.373) nuclei volumes
and network size. Whole amygdala (β = −0.199, p = 0.186) and
hippocampal (β = −0.040, p = 0.774) volumes similarly showed
no significant association.

DISCUSSION

The present study examined the associations between amygdala
nuclei volumes and social network size in homeless and
precariously housed persons. Consistent with previous
work by Bickart et al. (2011), we found that larger total
amygdala and central nucleus volumes were associated
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TABLE 1 | Participant demographic and clinical characteristics.

Overall sample (n = 60) 1 Connection (n = 14) >1 Connection (n = 46) Group difference∗ t/χ2 (p)

Characteristic n (%) Mean (SD) n (%) Mean (SD) n (%) Mean (SD)

Age 43.59(10.32) 43.61 (12.18) 43.58 (9.84) 0.008 (0.993)
Education 10.40 (2.47) 10.14 (2.82) 10.48 (2.38) −0.442 (0.660)
Sex, male 44 (73.3) 11 (78.6) 33 (71.7) 0.487 (0.485)
Age of first homelessnessa 28.96 (11.03) 27.45 (9.95) 29.19 (11.59) −0.560 (0.579)
Duration living in neighborhoodb 10.02 (7.02) 9.11 (6.59) 10.30 (7.20) −0.550 (0.585)
Number of connections 2.57 (1.59) 3.04 (1.52)
PANSSc

Positive 14.64 (5.83) 13.00 (3.79) 15.12 (6.27) −1.446 (0.159)
Negative 16.11 (5.60) 15.92 (4.50) 16.17 (5.93) −0.137 (0.892)
General 33.85 (8.00) 34.42 (7.77) 33.68 (8.15) 0.277 (0.783)
Total 64.60 (16.67) 63.33 (10.69) 64.98 (18.14) −0.298 (0.767)
Everyday functioning
RFS 12.23 (3.89) 12.43 (3.06) 12.17 (4.13) 0.213 (0.832)
SOFASd 41.19 (13.29) 42.86 (12.60) 40.66 (13.62) 0.536 (0.594)
Ever homelessa 29 (48.3) 7 (87.50) 22 (66.67) 2.236 (0.135)
Ethnicity 6.00 (0.199)
White 35 (58.3) 7 (50.0) 28 (60.9)
Indigenous 17 (28.3) 3 (21.4) 14 (30.4)
Other/Unknown 8 (13.4) 4 (28.6) 4 (8.7)
Viral infection
HIV 12 (20.0) 3 (21.4) 9 (20.0) 0.150 (0.881)
HCVb 42 (70.0) 9 (64.3) 33 (73.3) −0.644 (0.522)
Substance dependence
Alcohol 11 (18.3) 4 (28.6) 7 (15.2) 0.741 (0.389)
Cannabis 22 (36.7) 4 (28.6) 18 (39.1) 0.086 (0.770)
Cocaine 45 (75.0) 10 (71.4) 35 (76.1) 0.071 (0.897)
Methamphetamine 19 (31.7) 1 (7.1) 18 (39.1) 5.158 (0.023)
Heroin 22 (36.7) 3 (21.4) 19 (41.3) 0.823 (0.364)
Self-reported history of TBI 28 (46.7) 7 (50) 21 (45.7) 0.134 (0.714)

Note. N = 60; aN = 41; bN = 59; cN = 53; dN = 58. RFS, Role Functioning Scale; SOFAS, Social and Occupational Functioning Scale; HCV, hepatitis C virus; TBI, traumatic brain injury.
∗Comparison of groups with 1 or >1 connection.

with larger social network size. Within the basolateral
nucleus complex, larger basal and accessory basal nuclei
were also associated with social network size, whereas the
lateral nucleus volume was not. These findings support
previous research identifying the amygdala as an important
structure for social connection in humans (Adolphs et al.,
1998; Bickart et al., 2011, 2014), and suggest certain
nuclei may be differentially related to social connection in
marginalized persons.

It is increasingly appreciated that the biological relevance of
the amygdala can be best understood through an examination of
the distinct cytoarchitectural, chemoarchitectural, and functional
connectivity patterns that characterize the multiple nuclei
comprising this structure (Kedo et al., 2018). A recent report
showed evidence for three main subdivisions of the amygdala
based on functionalMRI activation patterns and their differential
correlation with cortical functional networks across the brain
(Sylvester et al., 2020). These functional subdivisions roughly
overlap with the centromedial, laterobasal, and superficial
structural partitions based on cytoarchitectonics defined by
Amunts et al. (2005) and approximate the select regions we
examined in the current study. Our work, therefore, represents
an important extension of the correlates of amygdala nuclei
from the functional neural level to the human behavioral level
in a real-world social context. The central and basolateral
nuclei have previously been implicated in the maintenance

of social networks in primates (Wellman et al., 2016), and
we showed similar associations in humans. The differential
associations with social network size among the nuclei of
the basolateral complex are consistent with findings from
Manassero et al. (2018) showing that the basal and lateral
nuclei account for opposite behavioral responses to threatening
stimuli, and thus may have unique roles in their contribution to
social behaviors.

Consistent with previous studies involving homeless and
precariously housed individuals (Blankertz and Cnaan, 1994;
Crawley et al., 2013; Bower et al., 2018), social networks in
our participants were small, with approximately 60% of our
sample reporting two or less supportive connections (Knerich
et al., 2019). Given the well-established role of the amygdala
in fear circuitry and avoidance behaviors, it is reasonable
to posit that size of the social network may be related to
social anxiety. Smaller volumes in the lateral and basal nuclei
have been previously reported in patients with panic disorder
(Asami et al., 2018). Given the high prevalence of anxiety
disorders (∼31–42% of individuals) observed in this sample
(Vila-Rodriguez et al., 2013; Barbic et al., 2018), this may be a
contributing factor to social isolation in an already challenging
living environment.

Like our previous report, the social network structure
in this sample is highly linked to the building of residence
(Knerich et al., 2019). We further strengthened this study
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FIGURE 2 | Sociogram of single room occupancy (SRO) hotel tenants.

using egocentric network analyses that included family
or distant connections outside of our study recruitment.
Individuals reported few supportive connections, with almost
50% reporting four or less, which is substantially smaller

than the average social network size in non-marginalized,
healthy adults (Hill and Dunbar, 2003; Dunbar, 1993; Von Der
Heide et al., 2014). Notably, when we expanded networks
to include all individuals listed by each participant, we
failed to find a significant association between amygdala
nuclei and the number of social connections, raising the
possibility that the neurobiological contributions to social
connection may be more salient within an individual’s
immediate environment. This has important clinical relevance as
local social networks may be utilized to bolster treatment
outcomes in this vulnerable, underserved population
(Christakis, 2004). For instance, supports built directly
into the immediate environment of an individual, such as
on-site peer support to facilitate connections and access to
health services, may be maximally effective, but this requires
further investigation.

This study has several limitations. First, networks are
universally dynamic and can change in unpredictable ways
(Valente, 2012). This may be particularly true in homeless and
precariously housed persons who typically have fragmented
and fragile social networks (Green et al., 2013; Bower et al.,
2018). While we showed evidence of network stability within
18 months, there may still be longer-term fluctuations in
network composition. Second, variation in the local social
and economic landscapes may limit the generalizability of our
findings to other settings, although our sample’s characteristics
are consistent with international reports on homelessness (Fazel
et al., 2014). Further, comparison of the larger Hotel Study
sample to other Canadian cohorts of homeless and precariously
housed persons reveals substantial similarities in demographic
and clinical characteristics that imply the likelihood of at least
a modest generalizability (see Gicas et al., 2020). Finally, we
included the hippocampus as a control brain region, similar
to previous work in this area (Bickart et al., 2011), because

TABLE 2 | Regression results for social network connections.

Degree (number of supportive social connections)

Independent variable β R2 ∆R2 p-value

Block 1- All models 0.049 − 0.236
Age −0.168 0.197
Sex −0.149 0.254

Block 2- Model 1 0.066 0.016 0.324
Age −0.140 0.283
Sex −0.193 0.145
Total hippocampal volume 0.205 0.126

Block 2- Model 2 0.086 0.037 0.140
Age −0.017 0.905
Sex −0.148 0.240
Total amygdala volume 0.315 0.031

Block 2- Model 3 0.156 0.106 0.010
Age −0.123 0.324
Sex −0.129 0.297
Central nucleus volume 0.330 0.010

Block 2- Model 4 0.097 0.048 0.090
Age −0.086 0.531
Sex −0.181 0.164
Basolateral nucleus complex volume 0.237 0.090

Note. N = 60.
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it is not directly implicated in mediating social behaviors.
However, it is important to acknowledge that there is a
high rate of adverse childhood experiences among homeless
persons (Liu et al., 2020). Such histories of complex trauma are
likely to impact the hippocampus (Ahmed-Leitao et al., 2016);
therefore, the social underpinnings of this region should not
be overlooked.

This work provides a foundation for understanding the
neurobiological contributions to social connection in a
vulnerable and medically complex group and remains an
important avenue of research amidst ongoing efforts to remove
barriers to better health and wellness for persons who are
homeless or precariously housed. Future research should
consider the emerging models of functional amygdala-cortical
interactions as a framework for understanding real-world social
behaviors and how these may breakdown in the context of
psychiatric illness and addiction (Sylvester et al., 2020). Building
on this, the relationship between social interconnectedness
and functional connectivity within the amygdala should be
considered important next steps.
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