4,997 research outputs found

    Cosmological Parameters from Observations of Galaxy Clusters

    Full text link
    Studies of galaxy clusters have proved crucial in helping to establish the standard model of cosmology, with a universe dominated by dark matter and dark energy. A theoretical basis that describes clusters as massive, multi-component, quasi-equilibrium systems is growing in its capability to interpret multi-wavelength observations of expanding scope and sensitivity. We review current cosmological results, including contributions to fundamental physics, obtained from observations of galaxy clusters. These results are consistent with and complementary to those from other methods. We highlight several areas of opportunity for the next few years, and emphasize the need for accurate modeling of survey selection and sources of systematic error. Capitalizing on these opportunities will require a multi-wavelength approach and the application of rigorous statistical frameworks, utilizing the combined strengths of observers, simulators and theorists.Comment: 53 pages, 21 figures. To appear in Annual Review of Astronomy & Astrophysic

    Canine distemper virus neutralization activity is low in human serum and it is sensitive to an amino acid substitution in the hemagglutinin protein

    Get PDF
    Β© 2015 Elsevier Inc.Serum was analyzed from 146 healthy adult volunteers in eastern Africa to evaluate measles virus (MV) and canine distemper virus (CDV) neutralizing antibody (nAb) prevalence and potency. MV plaque reduction neutralization test (PRNT) results indicated that all sera were positive for MV nAbs. Furthermore, the 50% neutralizing dose (ND50) for the majority of sera corresponded to antibody titers induced by MV vaccination. CDV nAbs titers were low and generally were detected in sera with high MV nAb titers. A mutant CDV was generated that was less sensitive to neutralization by human serum. The mutant virus genome had 10 nucleotide substitutions, which coded for single amino acid substitutions in the fusion (F) and hemagglutinin (H) glycoproteins and two substitutions in the large polymerase (L) protein. The H substitution occurred in a conserved region involved in receptor interactions among morbilliviruses, implying that this region is a target for cross-reactive neutralizing antibodies

    Measurement delay associated with the Guardian RT continuous glucose monitoring system.

    Get PDF
    AIMS: Using compartment modelling, we assessed the time delay between blood glucose and sensor glucose measured by the Guardian RT continuous glucose monitoring system in young subjects with Type 1 diabetes (T1D). METHODS: Twelve children and adolescents with T1D treated by continuous subcutaneous insulin infusion (male/female 7/5; age 13.1 +/- 4.2 years; body mass index 21.9 +/- 4.3 kg/m(2); mean +/- sd) were studied over 19 h in a Clinical Research Facility. Guardian RT was calibrated every 6 h and sensor glucose measured every 5 min. Reference blood glucose was measured every 15 min using a YSI 2300 STAT Plus Analyser. A population compartment model of sensor glucose-blood glucose kinetics was adopted to estimate the time delay, the calibration scale and the calibration shift. RESULTS: The population median of the time delay was 15.8 (interquartile range 15.2, 16.5) min, which was corroborated by correlation analysis between blood glucose and 15-min delayed sensor glucose. The delay has a relatively low intersubject variability, with 95% of individuals predicted to have delays between 10.4 and 24.3 min. Population medians (interquartile range) for the scale and shift are 0.800 (0.777, 0.823) (unitless) and 1.66 (1.47, 1.84) mmol/l, respectively. CONCLUSIONS: In young subjects with T1D, the total time delay associated with the Guardian RT system was approximately 15 min. This is twice that expected on physiological grounds, suggesting a 5- to 10-min delay because of data processing. Delays above 25 min are rarely to be observed

    Non‐invasive measurement of retinal permeability in a diabetic rat model

    Get PDF
    This is the author accepted manuscript. The final version is available from Wiley via the DOI in this recordObjective The gold standard for measuring blood‐retinal barrier permeability is the Evans blue assay. However, this technique has limitations in vivo, including non‐specific tissue binding and toxicity. This study describes a non‐toxic, high throughput and cost effective alternative technique that minimizes animal usage. Methods Sodium fluorescein fundus angiography was performed in non‐ and diabetic Brown Norway rats on days 0, 7, 14, 21 and 28. Sodium fluorescein intensity in the retinal interstitium and a main retinal vessel were measured over time. The intensity gradients were used to quantify retinal vascular permeability. Post study eyes were fixed, dissected and stained (isolectin B4) to measure required parameters for permeability quantification including: Total vessel length per retinal volume, radius and thickness. Results In the non‐diabetic cohort retinal permeability remained constant over the 28‐day study period. However, in the diabetic cohort there was a significant and progressive increase in retinal permeability from day 14 to 28 (p<0.01, p<0.001, p<0.0001). Conclusions This novel imaging methodology in combination with mathematical quantification allows retinal permeability to be non‐invasively and accurately measured at multiple time points in the same animal. In addition, this technique is a non‐toxic, rapid, sensitive and cost‐effective alternative to the Evans blue assay.Medical Research Council (MRC)National Eye Research CentreMasonic Charitable Foundatio

    Molecular Genetics of T Cell Development

    Get PDF
    T cell development is guided by a complex set of transcription factors that act recursively, in different combinations, at each of the developmental choice points from T-lineage specification to peripheral T cell specialization. This review describes the modes of action of the major T-lineage-defining transcription factors and the signal pathways that activate them during intrathymic differentiation from pluripotent precursors. Roles of Notch and its effector RBPSuh (CSL), GATA-3, E2A/HEB and Id proteins, c-Myb, TCF-1, and members of the Runx, Ets, and Ikaros families are critical. Less known transcription factors that are newly recognized as being required for T cell development at particular checkpoints are also described. The transcriptional regulation of T cell development is contrasted with that of B cell development, in terms of their different degrees of overlap with the stem-cell program and the different roles of key transcription factors in gene regulatory networks leading to lineage commitment

    Proton Driven Plasma Wakefield Acceleration

    Full text link
    Plasma wakefield acceleration, either laser driven or electron-bunch driven, has been demonstrated to hold great potential. However, it is not obvious how to scale these approaches to bring particles up to the TeV regime. In this paper, we discuss the possibility of proton-bunch driven plasma wakefield acceleration, and show that high energy electron beams could potentially be produced in a single accelerating stage.Comment: 13 pages, 4 figure

    Macrosystems ecology: Understanding ecological patterns and processes at continental scales

    Get PDF
    Macrosystems ecology is the study of diverse ecological phenomena at the scale of regions to continents and their interactions with phenomena at other scales. This emerging subdiscipline addresses ecological questions and environmental problems at these broad scales. Here, we describe this new field, show how it relates to modern ecological study, and highlight opportunities that stem from taking a macrosystems perspective. We present a hierarchical framework for investigating macrosystems at any level of ecological organization and in relation to broader and finer scales. Building on well-established theory and concepts from other subdisciplines of ecology, we identify feedbacks, linkages among distant regions, and interactions that cross scales of space and time as the most likely sources of unexpected and novel behaviors in macrosystems. We present three examples that highlight the importance of this multiscaled systems perspective for understanding the ecology of regions to continents

    The Effect of Epstein-Barr Virus Latent Membrane Protein 2 Expression on the Kinetics of Early B Cell Infection

    Get PDF
    Infection of human B cells with wild-type Epstein-Barr virus (EBV) in vitro leads to activation and proliferation that result in efficient production of lymphoblastoid cell lines (LCLs). Latent Membrane Protein 2 (LMP2) is expressed early after infection and previous research has suggested a possible role in this process. Therefore, we generated recombinant EBV with knockouts of either or both protein isoforms, LMP2A and LMP2B (Ξ”2A, Ξ”2B, Ξ”2A/Ξ”2B) to study the effect of LMP2 in early B cell infection. Infection of B cells with Ξ”2A and Ξ”2A/Ξ”2B viruses led to a marked decrease in activation and proliferation relative to wild-type (wt) viruses, and resulted in higher percentages of apoptotic B cells. Ξ”2B virus infection showed activation levels comparable to wt, but fewer numbers of proliferating B cells. Early B cell infection with wt, Ξ”2A and Ξ”2B viruses did not result in changes in latent gene expression, with the exception of elevated LMP2B transcript in Ξ”2A virus infection. Infection with Ξ”2A and Ξ”2B viruses did not affect viral latency, determined by changes in LMP1/Zebra expression following BCR stimulation. However, BCR stimulation of Ξ”2A/Ξ”2B cells resulted in decreased LMP1 expression, which suggests loss of stability in viral latency. Long-term outgrowth assays revealed that LMP2A, but not LMP2B, is critical for efficient long-term growth of B cells in vitro. The lowest levels of activation, proliferation, and LCL formation were observed when both isoforms were deleted. These results suggest that LMP2A appears to be critical for efficient activation, proliferation and survival of EBV-infected B cells at early times after infection, which impacts the efficient long-term growth of B cells in culture. In contrast, LMP2B did not appear to play a significant role in these processes, and long-term growth of infected B cells was not affected by the absence of this protein. Β© 2013 Wasil et al
    • …
    corecore