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Abstract 

Serum was analyzed from 146 healthy adult volunteers in eastern Africa to evaluate 

measles virus (MV) and canine distemper virus (CDV) neutralizing antibody (nAb) 

prevalence and potency. MV plaque reduction neutralization test (PRNT) results 

indicated that all sera were positive for MV nAbs. Furthermore, the 50% neutralizing 

dose (ND50) for the majority of sera corresponded to antibody titers induced by MV 

vaccination. CDV nAbs titers were low and generally were detected in sera with high 

MV nAb titers. A mutant virus was generated that was less sensitive to neutralization by 

human serum. The mutant virus genome had 10 nucleotide substitutions, which coded 

for single amino acid substitutions in the fusion (F) and hemagglutinin (H) glycoproteins 

and two substitutions in the large polymerase (L) protein. The H substitution occurred in 

a conserved region involved in receptor interactions among morbilliviruses, implying that 

this region is a target for cross-reactive neutralizing antibodies.  
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Introduction 

Canine distemper virus (CDV) is a member of the Morbillivirus genus, which also 

includes measles virus (MV), rinderpest virus (RPV), peste des petits ruminants virus 

and morbilliviruses that infect aquatic mammals (Blixenkrone-Moller, 1993; Di Guardo et 

al., 2005). These related viruses generally each have a restricted natural host range. 

For example MV infects humans, RPV infects cattle and other even-toed ungulates, and 

CDV infects a variety of carnivorous animals. However, CDV infection has been 

observed in monkey colonies indicating that its host range can extend to primates (Qiu 

et al., 2011; Sakai et al., 2013a), but so far, there is no conclusive evidence linking CDV 

to human disease in spite of its speculative association to illness of unknown etiology 

(Rima and Duprex, 2006). Lab-adapted CDV has been injected into humans without 

causing symptoms of infection suggesting that humans are not a permissive host for the 

virus (Hoekenga et al., 1960), which is consistent with recent studies showing that 

mutations facilitating both entry and replication are needed for CDV to efficiently adapt 

to human cells (Otsuki et al., 2013; Sakai et al., 2013b). Prevalent MV immunity induced 

by universal vaccination or natural infections might also play a role in preventing CDV 

from crossing the human barrier (de Vries et al., 2014). Despite considerable 

characterization of antigenic and immunological relationships between CDV and MV 

(Haile et al., 1982; Orvell and Norrby, 1974, 1980; Stephenson and ter Meulen, 1979), 

CDV neutralizing antibodies (nAbs) in humans have not been extensively investigated.   

Morbilliviruses are attractive candidates for development of replication-competent 

vectors because modified live vaccines (e.g. MV, CDV, and RPV) have proven to be 

very safe and efficacious (Buczkowski et al., 2014), and promising preclinical results 
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have been generated with a number of experimental vectors (Brandler et al., 2007; 

Brandler and Tangy, 2008; Despres et al., 2005; Gauvrit et al., 2008; Guerbois et al., 

2009; Miest and Cattaneo, 2014; Wang et al., 2012). Morbilliviruses seem particularly 

relevant for development of replication-competent AIDS vaccine vectors since this 

genera of viruses replicates in lymphoid tissues like HIV (Draper and Heeney, 2010; 

Koff et al., 2013; Parks et al., 2013). Pre-existing MV immunity may interfere with use of 

MV vectors, and unlike other viral vector systems in which rare serotype viruses can be 

used as vector alternatives (Mingozzi et al., 2013; Santra et al., 2009), MV has just one 

serotype. Thus, CDV has been considered as a MV alternative to minimize the effect of 

widespread anti-MV antibodies (Miest et al., 2011; Zhang et al., 2013b). Because 

antibodies specific to MV do cross-react with CDV (Appel et al., 1984; de Vries et al., 

2014; Rima, 1983; Taylor et al., 1991), it is important to evaluate the prevalence and 

potency of CDV neutralizing activity in humans.   

In this study, 146 serum samples collected from healthy adults in three eastern Africa 

countries were surveyed for both MV and CDV nAbs. We found that MV nAbs were 

prevalent in these samples while the frequency of samples with significant CDV nAb 

titers was low. Moreover, when CDV neutralizing activity was detected, it correlated with 

high anti-MV titers. We also used human anti-serum to derive an in vitro escape mutant 

CDV strain with increased resistance to neutralization. Genomic sequence analysis of 

the resistant strain revealed an amino acid substitution in a conserved region of the MV 

and CDV hemagglutinin (H) proteins that may help identify the domain recognized by 

cross-reactive nAbs and aide in future design H variants that are less sensitive to the 

effect of anti-vector immunity.                 
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Results:  

MV nAbs in African serum samples:  

Serum was collected from 146 healthy adult male and female volunteers between 19 

and 50 years of age (Table 1). The volunteers were participants in vaccine trial 

preparedness cohorts (Kamali, 2014) enrolled at 5 clinical research centers (CRCs) 

supported by IAVI in Kenya (Kilifi and Nairobi), Rwanda (Kigali), and Uganda (Masaka 

and Entebbe).  

The threshold for MV nAb positivity was defined as average ND50 titer of naïve 

macaque serum plus 3 times standard deviation. When the PRNT was performed with 

the naïve macaque serum control, the threshold was calculated as 8.63. All serum 

samples from African volunteers were positive for MV nAbs since their titers were above 

this threshold (Figure 1) and the ND50 values ranged from 16.0 to 6,270. For 

comparison, serum analyzed from a monkey vaccinated with an MV vaccine had an 

ND50 value of 1,446 and earlier studies in college students indicated that ND50 titers 

below 120 do not prevent measles (Chen et al., 1990). Overall, 77.4% of the African 

serum MV ND50 values fell between 120-2,000, which is approximately equivalent to 

300-5,000 milli-International Units (mIU) of WHO international standard MV antibodies 

(Cohen et al., 2007). The 300-5,000 mIU range is consistent with MV nAb levels 

induced by routine vaccination (Hussain et al., 2013; Leuridan et al., 2010), suggesting 

that these volunteers probably were vaccinated, although an MV vaccination history 

was not available to confirm this. Thirteen percent of the samples exhibited MV ND50 
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titers above 2,000, which was indicative of a stronger response than typically observed 

after vaccination suggesting that some volunteers had contracted measles at some 

point (Leuridan et al., 2010). No significant difference in ND50 titers was observed 

across gender or age groups. Overall antibody titers were similar among the regions 

except for Nairobi where volunteers exhibited significantly lower titers than other regions 

(p=0.01). 

Generally low CDV nAbs titers in African serum samples and their correlation with the 

magnitude of MV nAbs:  

When the CDV PRNT was performed with naïve ferret serum, the average CDV ND50 

titer plus 3 times standard deviation was determined to be 29.29, which we employed as 

our threshold for positivity. Based on this, approximately 33.6% of the African volunteer 

serum samples were negative. ND50 titers in 46.6% of the volunteers were between 

29.3-120 (Figure 2) and the remaining 19.8% had CDV ND50 titers above 120 but 

below 800. For comparison, serum from a ferret recently vaccinated with live-attenuated 

CDV was 33,551. Similar to MV nAbs, CDV ND50 titers were not significantly different 

across gender. With the exception of the volunteers from the Masaka CRC where 

higher CDV nAbs (p<0.001) were detected, no significant difference was observed for 

the other geographical regions. Although the CDV nAb titers overall were low, positive 

CDV nAb values generally correlated with higher magnitude MV titers (Figure 3A, 

Spearman’s ρ= 0.61, p<0.001). This relationship persisted when the correlation 

analyses were performed using nAb data that were stratified by volunteer enrollment 

site, gender, and age. Notably, the correlation did not significantly change when the 

analysis was performed without including data points from Masaka CRC in which the 
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volunteers had higher CDV nAb titers (Figure 3B, Spearman’s ρ= 0.63, p<0.001). This 

indicated that the correlation relationship between CDV and MV nAbs was general and 

was not due to this individual CRC. Given the lack of epidemiologic evidence to support 

frequent infection of CDV in humans, this result suggests that CDV neutralization is due 

to cross-neutralizing MV antibodies, which are present in low quantities and are 

detectable with the CDV PRNT only in volunteers with relatively high MV ND50 titers.    

A mutant CDV was generated that was more resistant to neutralization by human 

serum:  

To better understand the molecular basis of the cross-neutralization, a neutralization-

resistant CDV mutant was isolated and its genomic nucleotide sequence determined. 

The neutralization-resistant CDV mutant was selected using a single healthy adult 

donor serum of American origin that was available from a commercial source and had 

detectable CDV and MV nAbs. The neutralization-resistant CDV mutant grew in Vero 

cells with similar kinetics as the progenitor virus (data not shown) indicating that the 

escape mutation(s) had little effect on replication in culture. When the mutant was 

analyzed with the CDV PRNT using 25 serum samples randomly selected from the 

African volunteers, it was more resistant to neutralization in all sera tested. Across the 

25 samples, the ND50 titer determined with the mutant virus was decreased by 2.1 fold 

compared to the progenitor CDV (Figure 4).  

Genomic sequence analysis was performed on the resistant virus population and 10 

nucleotide substitutions were detected. Five of the substitutions were in protein coding 

sequences but were silent in terms of amino acid coding and one mutation was 
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detected in the trailer region (Table 2).   Four mutations caused amino acid coding 

changes with one in the fusion (F), one in the H and two in the large polymerase (L) 

proteins. The F gene mutation resulted in a tyrosine (Y) to serine (S) substitution at 

amino acid (aa) 48 in the signal peptide (Figure 5), while the H mutation resulted in a Y 

to aspartic acid (D) substitution at aa537 (Figure 6). The H amino acid substitution 

occurred in a region that is involved in virus receptor interactions and is conserved 

across morbilliviruses (Figure 6).  

The mouse monoclonal antibody 2F4 was used to confirm that the Y537D substitution 

altered antibody recognition in the receptor binding region. The 2F4 antibody is specific 

for the receptor binding region of MV H and is a potent neutralizer (Tahara et al., 2013). 

Stock concentration of the 2F4 antibody used in this study was 1.85 mg/ml and its 

neutralizing activity against MV was confirmed. When the antibody was tested in CDV 

PRNT, the dilution causing 50% neutralization was determined to be 1,017 and the 

calculated 50% inhibitory concentration (IC50) was 1.8 µg/ml based on this dilution 

(Figure 4B). In contrast, the 2F4 antibody had relatively little inhibitory effect on infection 

with the CDV mutant as shown by the significantly lower PRNT value of 39.7, which was 

equivalent to IC50 of 46.6 µg/ml. These results indicated that the Y to D substitution 

diminished binding by antibody 2F4 in the receptor-binding region, suggesting that the 

amino acid substitution had a similar effect on antibodies responsible for neutralization 

activity in human serum.     

 

 

Discussion:  
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Results from this study showed that anti-CDV neutralizing activity was relatively low or 

absent in sera from African clinical trial volunteers. To our knowledge, this is the first 

human serosurvey involving a large number of volunteers conducted to investigate the 

prevalence and potency of CDV nAbs. The results also indicated that CDV neutralizing 

activity likely was related to cross-reactive MV-specific antibodies. We analyzed a 

smaller number of American serum samples obtained from a commercial source and 

found their CDV neutralization potency was similarly low (data not shown). CDV nAbs 

have been reported before, for example in serum from subacute sclerosing 

panencephalitis  (SSPE) patients and in a small number of human samples, which were 

shown to weakly neutralize a MV-CDV chimeric virus (Miest et al., 2011; Sato et al., 

1973), but these studies were not designed to estimate the prevalence of anti-CDV 

neutralization. Our serosurvey results indicate that low level CDV nAbs can exist in a 

significant proportion of human populations probably induced by MV vaccination or 

infection. This contrasts with data from dogs, mice, and non-human primates vaccinated 

with live MV or vectors expressing MV F and H proteins in which detectable CDV nAbs 

were not elicited although MV vaccination prevented infection or disease progression 

following pathogenic CDV challenge (Appel et al., 1984; de Vries et al., 2014; Taylor et 

al., 1991; Wild et al., 1993). These results seem to suggest that MV vaccines induce 

human antibodies that can cross-neutralize CDV, but that this is less common in animal 

models.  

Among the 146 volunteers in the survey, 66.4% were positive for low CDV nAbs. This 

frequency of positivity suggests that MV vaccination or MV infection is the likely inducer 

of the CDV nAbs, although responses induced by CDV exposure cannot be ruled out. 
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Among the 5 CRCs in the survey, samples from the Masaka CRC had the highest CDV 

nAb titers. This may be related to the rural location of the Masaka site compared with 

the other 4 CRC locations. It is conceivable that rural locality could increase the risk of 

human CDV exposure due to a presence of unvaccinated domestic dogs and wild 

animal species that are occasionally infected by CDV during distemper outbreaks 

(Guiserix et al., 2007; Leisewitz et al., 2001; van de Bildt et al., 2002). The prevalence 

of higher titers in Masaka was not solely responsible for the association between high 

MV titers and CDV neutralizing antibodies as the same trend was seen if the Masaka 

data were omitted from the statistical analysis.     

The results showed that MV nAbs are prevalent since MV ND50 titers are all above the 

positive cutoff value of 8.63 that was calculated based on average titers of a negative 

monkey serum sample. In another study where PRNT was used for analysis of clinical 

human samples, a titer of 8 was found to be the threshold for detecting low levels of 

nAbs (Ratnam et al., 1995), which is similar to our cutoff value. Although all of the 

samples we analyzed were positive for MV antibodies, 9.6% had ND50 titers lower than 

120, which is the threshold for prevention of illness due to measles virus infection (Chen 

et al., 1990). If we assume that CDV ND50 titers greater than 120 are needed to inhibit 

infection with a vector based on CDV, then 80.2% of the African volunteers were below 

this threshold.   

Two amino acid substitutions were identified in the glycoproteins and two in the L 

protein of the CDV mutant that was selected for increased resistance to human serum 

neutralization. Because the membrane glycoproteins F and H are the only known 

targets of nAbs (Orvell and Norrby, 1974, 1980), the L mutations likely did not contribute 
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to neutralization resistance. The F amino acid substitution was located in the signal 

peptide that is present in the precursor protein but absent in mature form, and therefore 

was considered less likely to affect neutralization resistance (Plattet et al., 2007; von 

Messling et al., 2004). H gene diversity is common and often implicated in CDV 

evolution driven by immunologic pressure (Martella et al., 2006; Sekulin et al., 2011; 

Trebbien et al., 2014). The Y537D substitution in CDV H was located in a region that is 

conserved among morbilliviruses and corresponds to amino acid Y541 in MV H. This 

region of MV H contains residues involved in binding to cellular CD46 and Nectin, and is 

associated with antibody neutralization (Mateo et al., 2013; Santiago et al., 2010; 

Tahara et al., 2013; Zhang et al., 2013a). Due to high sequence identity in this H region, 

it is likely that nAbs induced by MV vaccination will bind the same domain in CDV H, 

and our data indicates that the Y to D substitution affected an epitope recognized by 

some cross-reactive nAbs in human serum. This conclusion agrees with our results with 

the MV H-specific monoclonal antibody 2F4, which we found to neutralize CDV but was 

significantly less active against the mutant virus. It was evident that the Y537D 

substitution did not abolish neutralization activity in human serum indicating that there 

were other binding sites recognized by nAbs, which is consistent with polyclonal nature 

of human antiserum against MV (Santibanez et al., 2005; Santibanez et al., 2002).    

The CDV H mutant might be useful for development of vaccine vectors or oncolytic 

agents because it is less sensitive to pre-existing MV-specific antibodies. Further 

characterization of the mutant H incorporated in a recombinant CDV will be required to 

determine if the Y537D substitution is stable during CDV propagation without constant 

application of selective pressure, if the substitution is attenuating, and whether it alters 
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receptor specificity. The general approach used to select the H mutant resistant to 

human serum may also be valuable for developing modified glycoproteins that are less 

susceptible to effects of anti-vector immunity.     

 

 

 

Materials and Methods:  

 

Cell and virus:  

Vero cells were used in the CDV or MV plaque reduction neutralization test (PRNT). 

The cells were maintained in Dulbecco’s modified Eagle’s medium (DMEM, Gibco) 

supplemented with 10% fetal bovine serum. The CDV used was a clonal isolate derived 

from a commercial vaccine (Schering-Plough, USA) prepared from the live-attenuated 

Onderstepoort virus. Isolation and culture of the CDV mutant are described below. 

Neutralization sensitivity of the mutant CDV was assessed with a subset of the serum 

samples from clinical trial volunteers. MV used in these studies was an attenuated 

Edmonston strain derived from a commercial vaccine preparation (ATTENUVAX, 

MERCK & CO., USA). All three viruses were propagated in Vero cells and plaque 

forming units (PFU) were quantified as described previously for CDV (Zhang et al., 

2013b).      

 

Serum samples:  
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A total of 146 human serum samples were analyzed with the CDV and MV PRNT. 

These samples were collected from three eastern African countries from healthy adults, 

ages 19 to 50, enrolled in vaccine-trial preparatory studies to determine regional HIV 

incidence (Kamali, 2014). For CDV PRNT, sera from naïve and CDV-vaccinated ferrets 

served as negative and positive controls. Naïve and MV-vaccinated monkey sera were 

used for MV PRNT controls. All serum samples were inactivated at 56oC for 30 min 

before conducting the PRNT.     

 

CDV and MV PRNT:  

The PRNT was conducted with CDV, mutant CDV, or MV according to a standard MV 

PRNT protocol with slight modifications (Cohen et al., 2007). Notably, infections were 

performed using Vero monolayers instead of infecting cells in suspension. Briefly, four-

fold serial dilutions were made with each serum sample starting with a 1:4 dilution made 

by mixing 12.5 ul of serum with 37.5 ul of DMEM in duplicate wells in 96-well plates. 

The next dilution was made by transferring 12.5 ul of the diluted serum samples to 37.5 

ul of DMEM and so on. To each well of diluted serum, an equal volume (37.5 ul) of CDV 

or MV solution was added and incubated for 2 h. Thus, the first serum dilution on the 

plate was 1:8. For each experiment, either ferret or monkey sera were used as negative 

and positive controls and were processed in the same way as test samples. Vero cell 

monolayers were prepared one day before in 24-well plates and were approximately 

80% confluent the following day when they were fed with 0.2 ml of fresh medium. After 

mixtures of virus and diluted serum were incubated for 2 h to allow antibody binding, the 
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suspension (50 ul) was transferred from the 96-well plates to the 24-well plates 

containing Vero cell monolayers. Following 2 hour virus adsorption, the medium was 

removed and cells were fed with 1 ml DMEM containing 0.75% methylcellulose. Three 

days later, medium was removed and cells were washed once with PBS and then fixed 

with 100% cold methanol for 30 min. For viral plaque detection, the cells were incubated 

with a rabbit antiserum specific for CDV nucleoprotein or a commercial monoclonal 

antibody specific for MV nucleoprotein (AbCAM, USA). After removing the primary 

antibody, incubation was conducted with anti-rabbit or anti-mouse secondary antibodies 

conjugated with horse-radish peroxidase (HRP). Staining was performed by addition of 

3-Amino-9-ethylcarbazole (AEC) substrate for HRP (Sigma). Average plaque numbers 

were calculated from the duplicated wells at every dilution for each serum sample. For 

determining neutralization titers, the assay was standardized to generate about 30 

plaques per well when virus was treated without serum. At least four identical wells 

were infected with the virus only for generating an average plaque number in each 

experiment. Fifty percent neutralization dose (ND50) titers were defined as the 

reciprocal of the serum dilution at which the number of plaques is reduced to 50% 

relative to virus only controls. The calculation of ND50 titers followed the Karber formula 

as described for MV PRNT (Cohen et al., 2007).  The serum samples were considered 

positive for CDV or MV nAbs if the titers were greater than the average ND50 titer of the 

respective naïve ferret or monkey serum plus 3 times the standard deviation. 

The PRNT was conducted in the same way for the mouse monoclonal antibody 2F4 

except the starting dilution was 1:80 instead of 1:10 used in serum neutralization test 

due to limited antibody availability. The 2F4 antibody is specific to the receptor binding 
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region of MV H protein and is a potent neutralizer to MV (Tahara et al., 2013). 

Concentration of the antibody was 1.85 mg/ml before dilution. Fifty percent inhibitory 

concentration (IC50) was calculated for the 2F4 antibody according to dilutions needed 

to neutralize 50% CDV.   

 

Selection of neutralization escape mutants using human immune serum:  

Neutralization resistant CDV was isolated using a commercial human serum prepared 

from a single healthy adult donor in USA (Innovative Research, USA). The serum 

sample was positive for both MV and CDV neutralizing antibodies. A commercial human 

serum was used because sufficient quantity was available to make it possible to 

conduct serial virus passage in the presence of nAbs, and this also allowed us to 

preserve our limited quantities of serum from the African volunteers. For selecting CDV 

mutants that resisted neutralization, 1 x 106 PFU of CDV in 1 ml of culture medium was 

incubated with 200 µl of the undiluted serum in 37oC incubator for 1 h, after which the 

virus was added to a Vero cell monolayer cultured in T25 flask (Nunc, USA). After 1 h 

adsorption, the virus inoculum was replaced with 5 ml of cell culture growth medium that 

was supplemented with 5% human immune serum. Medium supernatant was harvested 

6 days later and 20% was used to infect a fresh monolayer that was subsequently 

incubated in medium containing 5% human immune serum. The supernatant was 

harvested when cytopathic effect (CPE) appeared. Virus passage in the presence of 

human serum was repeated 2 more times. After the 4th round of infection, virus was 
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analyzed with the PRNT using a subset of the African serum samples. The genomes of 

parental and mutant CDV were sequenced and compared.  

 

Analysis of CDV genomic nucleotide sequences:  

Genomic sequences were determined by extracting RNA from infected cell lysates, 

performing reverse transcription and PCR (RT-PCR) using primers based on the CDV 

nucleotide sequence in GenBank (accession number AF014953), and performing DNA 

sequencing on amplified DNA fragments. Overlapping sequences were assembled and 

anylyzed using Vector NTI (version 11.5, Life Technologies). Genomic sequences from 

CDV and the neutralization-resistant mutant were aligned with ClustalW program in 

Lasergene software (DNASTAR Inc.).  

 

Statistical analysis: 

Data analyses were conducted using Stata (v13.1, College Station, TX, USA). 

Spearman’s rank correlation analyses were performed to determine the relationship 

between CDV and MV nAb titers. Spearman’s correlation coefficient Rho and P values 

were given. The titers were transformed to Log10 expression for the correlation 

analyses and linear regression shown in Figure 3. To consider potential confounding 

geographical impact, CDV and MV nAb data were stratified and the correlation analyses 

were controlled for volunteer enrollment site, gender, and age at the time of blood 

sample draw.     
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Volunteer sex 

    

 

 

Male Female Volunteer age 

CRC Total N % N % Median Mean Min Max 

Kigali 30 14 46.7 16 53.3 27.5 30.2 20 50 

Masaka 30 20 66.7 10 33.3 36.5 36.7 23 48 

Kilifi 26 13 50.0 13 50.0 32.5 32.2 20 46 

Nairobi 30 17 56.7 13 43.3 26.5 29.0 20 41 

Entebbe 30 15 50.0 15 50.0 30.5 30.1 19 45 

Total 146 79 54.1 67 45.9 32.0 31.6 19 50 

 

 

Table 1. Demographic characteristics of volunteers involved in the study (n=146). CRC: 

Clinical Research Center. 

 

 

 

 

 

 

 

 

 

 

 

 



Page 29 of 36 

 

 

 

 

  

 

 

 

 

 

 

 

 

Figure 1. Distribution of MV nAb titers. Negative threshold was defined as the average 

nAb titer of unvaccinated monkey serum plus 3 x standard deviation. Functional 

negative threshold was ND50 titer 120 since MV ND50 titers lower than that do not 

prevent measles (Chen et al., 1990). For the 146 volunteers, 90.4% had MV titers 

higher than 120 and majority of the titers were in ranges of 120.1-1,000 (61.0%) and 

1,000-2,000 (16.4%),  which correspond to MV antibodies induced by vaccinations 

(Hussain et al., 2013; Leuridan et al., 2010).  
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Figure 2. Distribution of CDV nAb titers. Negative threshold was defined as the average 

ND50 titer of unvaccinated ferret serum plus 3 x standard deviation. Total 80.2% of the 

volunteers had CDV ND50 titers either below the negative threshold or in 29.30-120 

range. 
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Figure 3. Strong correlation was found between MV and CDV nAb using Spearman’s 

rank correlation analysis. A. Correlation statistics from analyzing MV and CDV nAb titers 

of all 146 volunteers (Spearman’s coefficient Rho=0.61, p<0.001) suggest that CDV 

neutralization is due to cross-reactive MV nAbs that are present at low quantities in the 

volunteers who had relatively high MV nAb titers. Relationship between Log10 

transformed MV and CDV ND50 titers is shown by the fitted line. The shaded area 

represented 95% confidence interval of the fitted values. B. Analysis of the nAb values 

from the remaining 116 volunteers after excluding data points of Masaka CRC still 

showed a strong correlation between the MV and CDV nAb titers (Spearman’s 

coefficient Rho=0.63, p<0.001) and thus indicated that the observed correlation was 

general and was not due to the individual CRC in which the volunteers had relatively 

high level of CDV nAbs.   
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B. 

 

 

Figure 4. Neutralization of CDV and the neutralization-resistant mutant by human 

serum and mAb 2F4. A. ND50 titers of serum. Dots on the left represent 25 serum 

samples randomly selected from the 146 volunteers and the two lines represented 

mean ND50 values to each virus. The average ND50 titer to mutant CDV was 2.1 fold 

lower than that to CDV indicating the mutant CDV was more resistant to the serum 
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neutralization. B. IC50 of the 2F4 antibody. The bars represented concentrations of the 

2F4 antibody needed to neutralize 50% of the input CDV or the CDV mutant. The 

highest dilution of the monoclonal antibody causing 50% neutralization of CDV was 

1,017 and calculated IC50 was 1.8 µg/ml based on this dilution. In contrast, the maximal 

dilution to neutralize 50% of the mutant virus was only 39.7, which was equivalent to 

IC50 of 46.6 µg/ml, suggesting the Y to D substitution in the receptor binding site of H 

diminished the antibody binding.    
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Nucleotide differences between CDV and the neutralization resistant CDVa 

ntb     CDV Mutant CDV aa substitutionc 

M gene nt 3,432-4,439 

3,665 A G Silent 

3,707 A G Silent 

3,710 A G Silent 

F gene nt 4,935-6,923 

5,077 A C Y to S 

 H gene nt 7,079-8,902 

7,786 T A Silent 

8,687 T G Y to D 

 L gene nt 9,030-15,584 

11,455 A G Q to R 

14,298 A G I to V 
 14,324 C T Silent 
 

        Trailer nt 15,585-15,690 
 15,591     A G   N/A   

 

Table 2. Summary of nucleotide changes and amino acid substitutions between the 

CDV and neutralization resistant CDV mutant. a Genomic cDNA sequences of the two 

viruses were compared. Uniform length of 15,690 nt was achieved for each genomic 

cDNA after trimming sequence ends and assembly. b Nucleotide locations of genes and 

positions for nt changes in each gene are shown. c Amino acid coding substitutions 

caused by the nt changes are shown for each gene.        
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Figure 5. Mutation in F gene of the neutralization escape CDV isolate. A point mutation 

changed the tyrosine to serine at aa position 48 as highlighted in bold. The mutation 

locates in signal peptide region of CDV F. The signal peptide is from amino acid 1-135 

in precursor F protein (Plattet et al., 2007) and residues 1-50 are shown.   

 

 

 

Figure 6. Alignment of aa 501-547 of CDV H and corresponding regions in H proteins of 

MV,  rinderpest virus (P09460), peste des petits ruminants virus (PPRV AHA58209), 

dolphin morbillivirus (DMV Q66411) and phocine distemper virus (PDV P28882). Amino 

acid residues conserved among all 6 morbilliviruses are boxed. The CDV H is 607 aa in 

length and the point mutation changed Y to D at aa position 537 (pointed by the 

triangular arrow) in H of the neutralization-resistant mutant. This sequence corresponds 

to aa 505-551 in MV H (Masse et al., 2004), which is involved in H binding to MV 

receptors and is fully conserved among a variety of MV isolates including Edmonston, 

Schwarz, Moraten and Zagreb vaccine viruses (H protein sequence accession # in 

GenBank: P08362, AAA566657, CAL40872, and AM237414, respectively).  


