6,637 research outputs found

    Imprints of the QCD Phase Transition on the Spectrum of Gravitational Waves

    Full text link
    We have investigated effects of the QCD phase transition on the relic GW spectrum applying several equations of state for the strongly interacting matter: Besides the bag model, which describes a first order transition, we use recent data from lattice calculations featuring a crossover. Finally, we include a short period of inflation during the transition which allows for a first order phase transition at finite baryon density. Our results show that the QCD transition imprints a step into the spectrum of GWs. Within the first two scenarios, entropy conservation leads to a step-size determined by the relativistic degrees of freedom before and after the transition. The inflation of the third scenario much stronger attenuates the high-frequency modes: An inflationary model being consistent with observation entails suppression of the spectral energy density by a factor of ~10^(-12).Comment: 11 pages, 13 figure

    The Millennium Galaxy Catalogue: morphological classification and bimodality in the colour-concentration plane

    Full text link
    Using 10 095 galaxies (B < 20 mag) from the Millennium Galaxy Catalogue, we derive B-band luminosity distributions and selected bivariate brightness distributions for the galaxy population. All subdivisions extract highly correlated sub-sets of the galaxy population which consistently point towards two overlapping distributions. A clear bimodality in the observed distribution is seen in both the rest-(u-r) colour and log(n) distributions. The rest-(u-r) colour bimodality becomes more pronounced when using the core colour as opposed to global colour. The two populations are extremely well separated in the colour-log(n) plane. Using our sample of 3 314 (B < 19 mag) eyeball classified galaxies, we show that the bulge-dominated, early-type galaxies populate one peak and the bulge-less, late-type galaxies occupy the second. The early- and mid-type spirals sprawl across and between the peaks. This constitutes extremely strong evidence that the fundamental way to divide the luminous galaxy population is into bulges and discs and that the galaxy bimodality reflects the two component nature of galaxies and not two distinct galaxy classes. We argue that these two-components require two independent formation mechanisms/processes and advocate early bulge formation through initial collapse and ongoing disc formation through splashback, infall and merging/accretion. We calculate the B-band luminosity-densities and stellar-mass densities within each subdivision and estimate that the z ~ 0 stellar mass content in spheroids, bulges and discs is 35 +/- 2 per cent, 18 +/- 7 and 47 +/- 7 per cent respectively. [Abridged]Comment: Accepted for publication in MNRAS, 23 pages, 17 figures. Comments welcome. MGC website is at: http://www.eso.org/~jliske/mgc

    A Most Unusual Zeolite Templating: Cage to Cage Connection of One Guest Molecule

    Get PDF
    An unusual case of a diquaternary ammonium dication, with large bulky end groups built from the tropane moiety and connected by a C4 methylene chain, is found to reside in zeolite SSZ-35 (STF). The structure of the guest/host product is such that the tropane bicylic entities reside in the shallow cavities of the cages of the STF structure and the C4 methylene chain runs through the 10-ring (~5.5 Ã…) window that connects the cages. This is a most unusual (and energy-intensive) templating of a zeolite structure with the guest molecule spanning two unit cells. The unusual result was found by single crystal studies with the addition of the use of the SQUEEZE program to show a consistent fit for the guest molecule following from measured electron densities in the crystal structure work. These analyses were followed with MAS NMR studies to confirm the integrity of the diquaternary guest molecule in the host sieve. A few comparative diquaternary guest molecules in MFI zeolite are also studied

    The Millennium Galaxy Catalogue: The connection between close pairs and asymmetry; implications for the galaxy merger rate

    Full text link
    We compare the use of galaxy asymmetry and pair proximity for measuring galaxy merger fractions and rates for a volume limited sample of 3184 galaxies with -21 < M(B) -5 log h < -18 mag. and 0.010 < z < 0.123 drawn from the Millennium Galaxy Catalogue. Our findings are that: (i) Galaxies in close pairs are generally more asymmetric than isolated galaxies and the degree of asymmetry increases for closer pairs. At least 35% of close pairs (with projected separation of less than 20 h^{-1} kpc and velocity difference of less than 500 km s^{-1}) show significant asymmetry and are therefore likely to be physically bound. (ii) Among asymmetric galaxies, we find that at least 80% are either interacting systems or merger remnants. However, a significant fraction of galaxies initially identified as asymmetric are contaminated by nearby stars or are fragmented by the source extraction algorithm. Merger rates calculated via asymmetry indices need careful attention in order to remove the above sources of contamination, but are very reliable once this is carried out. (iii) Close pairs and asymmetries represent two complementary methods of measuring the merger rate. Galaxies in close pairs identify future mergers, occurring within the dynamical friction timescale, while asymmetries are sensitive to the immediate pre-merger phase and identify remnants. (iv) The merger fraction derived via the close pair fraction and asymmetries is about 2% for a merger rate of (5.2 +- 1.0) 10^{-4} h^3 Mpc^{-3} Gyr^{-1}. These results are marginally consistent with theoretical simulations (depending on the merger time-scale), but imply a flat evolution of the merger rate with redshift up to z ~1.Comment: 10 pages, 10 figures, emulateapj format. ApJ, accepte

    Using Unoccupied Aerial Vehicles to estimate availability and group size error for aerial surveys of coastal dolphins

    Full text link
    Aerial surveys are frequently used to estimate the abundance of marine mammals, but their accuracy is dependent upon obtaining a measure of the availability of animals to visual detection. Existing methods for characterizing availability have limitations and do not necessarily reflect true availability. Here, we present a method of using small, vessel-launched, multi-rotor Unoccupied Aerial Vehicles (UAVs, or drones) to collect video of dolphins to characterize availability and investigate error surrounding group size estimates. We collected over 20 h of aerial video of dive-surfacing behaviour across 32 encounters with Australian humpback dolphins Sousa sahulensis off north-western Australia. Mean surfacing and dive periods were 7.85 sec (se = 0.26) and 39.27 sec (se = 1.31) respectively. Dolphin encounters were split into 56 focal follows of consistent group composition to which example approaches to estimating availability were applied. Non-instantaneous availability estimates, assuming a 7 sec observation window, ranged between 0.22 and 0.88, with a mean availability of 0.46 (CV = 0.34). Availability tended to increase with increasing group size. We found a downward bias in group size estimation, with true group size typically one individual more than would have been estimated by a human observer during a standard aerial survey. The variability of availability estimates between focal follows highlights the importance of sampling across a variety of group sizes, compositions and environmental conditions. Through data re-sampling exercises, we explored the influence of sample size on availability estimates and their precision, with results providing an indication of target sample sizes to minimize bias in future research. We show that UAVs can provide an effective and relatively inexpensive method of characterizing dolphin availability with several advantages over existing approaches. The example estimates obtained for humpback dolphins are within the range of values obtained for other shallow-water, small cetaceans, and will directly inform a government-run program of aerial surveys in the region

    Distribution and characteristics of Infrared Dark Clouds using genetic forward modelling

    Full text link
    Infrared Dark Clouds (IRDCs) are dark clouds seen in silhouette in mid-infrared surveys. They are thought to be the birthplace of massive stars, yet remarkably little information exists on the properties of the population as a whole (e.g. mass spectrum, spatial distribution). Genetic forward modelling is used along with the Two Micron All Sky Survey and the Besancon Galactic model to deduce the three dimensional distribution of interstellar extinction towards previously identified IRDC candidates. This derived dust distribution can then be used to determine the distance and mass of IRDCs, independently of kinematic models of the Milky Way. Along a line of sight that crosses an IRDC, the extinction is seen to rise sharply at the distance of the cloud. Assuming a dust to gas ratio, the total mass of the cloud can be estimated. The method has been successfully applied to 1259 IRDCs, including over 1000 for which no distance or mass estimate currently exists. The IRDCs are seen to lie preferentially along the spiral arms and in the molecular ring of the Milky Way, reinforcing the idea that they are the birthplace of massive stars. Also, their mass spectrum is seen to follow a power law with an index of -1.75 +/- 0.06, steeper than giant molecular clouds in the inner Galaxy, but comparable to clumps in GMCs. This slope suggests that the IRDCs detected using the present method are not gravitationally bound, but are rather the result of density fluctuations induced by turbulence.Comment: 15 pages, 9 figures, accepted for publication in Ap

    Pollen-pistil interactions and self-incompatibility in the Asteraceae: new insights from studies of Senecio squalidus (Oxford ragwort)

    Get PDF
    Background Pollen-pistil interactions are an essential prelude to fertilization in angiosperms and determine compatibility/incompatibility. Pollen-pistil interactions have been studied at a molecular and cellular level in relatively few families. Self-incompatibility (SI) is the best understood pollen-pistil interaction at a molecular level where three different molecular mechanisms have been identified in just five families. Here we review studies of pollen-pistil interactions and SI in the Asteraceae, an important family that has been relatively understudied in these areas of reproductive biology. Scope We begin by describing the historical literature which first identified sporophytic SI (SSI) in species of Asteraceae, the SI system later identified and characterized at a molecular level in the Brassicaceae. Early structural and cytological studies in these two families suggested that pollen-pistil interactions and SSI were similar, if not the same. Recent cellular and molecular studies in Senecio squalidus (Oxford ragwort) have challenged this belief by revealing that despite sharing the same genetic system of SSI, the Brassicaceae and Asteraceae molecular mechanisms are different. Key cellular differences have also been highlighted in pollen-stigma interactions, which may arise as a consequence of the Asteraceae possessing a ‘semi-dry' stigma, rather than the ‘dry' stigma typical of the Brassicaceae. The review concludes with a summary of recent transcriptomic analyses aimed at identifying proteins regulating pollen-pistil interactions and SI in S. squalidus, and by implication the Asteraceae. The Senecio pistil transcriptome contains many novel pistil-specific genes, but also pistil-specific genes previously shown to play a role in pollen-pistil interactions in other species. Conclusions Studies in S. squalidus have shown that stigma structure and the molecular mechanism of SSI in the Asteraceae and Brassicaceae are different. The availability of a pool of pistil-specific genes for S. squalidus offers an opportunity to elucidate the molecular mechanisms of pollen-pistil interactions and SI in the Asteracea

    Tracking the stochastic growth of bacterial populations in microfluidic droplets

    Get PDF
    Bacterial growth in microfluidic droplets is relevant in biotechnology, in microbial ecology, and in understanding stochastic population dynamics in small populations. However, it has proved challenging to automate measurement of absolute bacterial numbers within droplets, forcing the use of proxy measures for population size. Here we present a microfluidic device and imaging protocol that allows high-resolution imaging of thousands of droplets, such that individual bacteria stay in the focal plane and can be counted automatically. Using this approach, we track the stochastic growth of hundreds of replicate Escherichia coli populations within droplets. We find that, for early times, the statistics of the growth trajectories obey the predictions of the Bellman-Harris model, in which there is no inheritance of division time. Our approach should allow further testing of models for stochastic growth dynamics, as well as contributing to broader applications of droplet-based bacterial culture

    Classificiation of Atrial Fibrillation Prone Patients Using Electrocardiographic Parameters in Neuro-Fuzzy Modeling,

    Get PDF
    Atrial Fibrillation (AF) is a significant clinical problem and the complications of cardiovascular postoperative AF often lead to longer hospital stays and higher heath care costs. The literature showed that AF may be preceded by changes in electrocardiogram (ECG) characteristics such as premature atrial activity, heart rate variability (HRV), and P-wave morphology. We hypothesize that the limitations of statistics-based attempts to predict AF occurrence may be overcome using a hybrid neuro-fuzzy prediction model that is better capable of uncovering complex, non-linear interactions between ECG parameters. We created a neuro-fuzzy network that was able to classify the patients into the control and AF groups with the performances: 99.42% sensitivity, 99.89% specificity, and 99.74% accuracy for 30 minutes just before AF onset
    • …
    corecore