We compare the use of galaxy asymmetry and pair proximity for measuring
galaxy merger fractions and rates for a volume limited sample of 3184 galaxies
with -21 < M(B) -5 log h < -18 mag. and 0.010 < z < 0.123 drawn from the
Millennium Galaxy Catalogue. Our findings are that:
(i) Galaxies in close pairs are generally more asymmetric than isolated
galaxies and the degree of asymmetry increases for closer pairs. At least 35%
of close pairs (with projected separation of less than 20 h^{-1} kpc and
velocity difference of less than 500 km s^{-1}) show significant asymmetry and
are therefore likely to be physically bound.
(ii) Among asymmetric galaxies, we find that at least 80% are either
interacting systems or merger remnants. However, a significant fraction of
galaxies initially identified as asymmetric are contaminated by nearby stars or
are fragmented by the source extraction algorithm. Merger rates calculated via
asymmetry indices need careful attention in order to remove the above sources
of contamination, but are very reliable once this is carried out.
(iii) Close pairs and asymmetries represent two complementary methods of
measuring the merger rate. Galaxies in close pairs identify future mergers,
occurring within the dynamical friction timescale, while asymmetries are
sensitive to the immediate pre-merger phase and identify remnants.
(iv) The merger fraction derived via the close pair fraction and asymmetries
is about 2% for a merger rate of (5.2 +- 1.0) 10^{-4} h^3 Mpc^{-3} Gyr^{-1}.
These results are marginally consistent with theoretical simulations (depending
on the merger time-scale), but imply a flat evolution of the merger rate with
redshift up to z ~1.Comment: 10 pages, 10 figures, emulateapj format. ApJ, accepte