981 research outputs found

    The NextGen Model Atmosphere grid: II. Spherically symmetric model atmospheres for giant stars with effective temperatures between 3000 and 6800~K

    Full text link
    We present the extension of our NextGen model atmosphere grid to the regime of giant stars. The input physics of the models presented here is nearly identical to the NextGen dwarf atmosphere models, however spherical geometry is used self-consistently in the model calculations (including the radiative transfer). We re-visit the discussion of the effects of spherical geometry on the structure of the atmospheres and the emitted spectra and discuss the results of NLTE calculations for a few selected models.Comment: ApJ, in press (November 1999), 13 pages, also available at http://dilbert.physast.uga.edu/~yeti/PAPERS and at ftp://calvin.physast.uga.edu/pub/preprints/NG-giants.ps.g

    A Sobolev Poincar\'e type inequality for integral varifolds

    Get PDF
    In this work a local inequality is provided which bounds the distance of an integral varifold from a multivalued plane (height) by its tilt and mean curvature. The bounds obtained for the exponents of the Lebesgue spaces involved are shown to be sharp.Comment: v1: 27 pages, no figures; v2: replaced citations of the author's dissertation by proofs, material of sections 1 and 3 reorganised, slightly more general results in section 2, some remarks, some discussion and some references added, 40 pages, no figure

    Mission activities planning for a Hermes mission by means of AI-technology

    Get PDF
    Mission Activities Planning is a complex task to be performed by mission control centers. AI technology can offer attractive solutions to the planning problem. This paper presents the use of a new AI-based Mission Planning System for crew activity planning. Based on a HERMES servicing mission to the COLUMBUS Man Tended Free Flyer (MTFF) with complex time and resource constraints, approximately 2000 activities with 50 different resources have been generated, processed, and planned with parametric variation of operationally sensitive parameters. The architecture, as well as the performance of the mission planning system, is discussed. An outlook to future planning scenarios, the requirements, and how a system like MARS can fulfill those requirements is given

    Climate Variability and Ross River Virus Transmission in Townsville Region, Australia 1985 to 1996

    Get PDF
    Background How climate variability affects the transmission of infectious diseases at a regional level remains unclear. In this paper, we assessed the impact of climate variation on the Ross River virus (RRv) transmission in the Townsville region, Queensland, north-east Australia. Methods Population-based information was obtained on monthly variations in RRv cases, climatic factors, sea level, and population growth between 1985 and 1996. Cross-correlations were computed for a series of associations between climate variables (rainfall, maximum temperature, minimum temperature, relative humidity and high tide) and the monthly incidence of RRv disease over a range of time lags. The impact of climate variability on RRv transmission was assessed using the seasonal auto-regressive integrated moving average (SARIMA) model. Results There were significant correlations of the monthly incidence of RRv to rainfall, maximum temperature, minimum temperature and relative humidity, all at a lag of 2 months, and high tide in the current month. The results of SARIMA models show that monthly average rainfall (β=0.0012, p=0.04) and high tide (β=0.0262, p=0.01) were significantly associated with RRv transmission, although temperature and relative humidity did not seem to have played an important role in the Townsville region. Conclusions Rainfall, and high tide were likely to be key determinants of RRv transmission in the Townsville region

    Evolutionary models for very-low-mass stars and brown dwarfs with dusty atmospheres

    Get PDF
    We present evolutionary calculations for very-low-mass stars and brown dwarfs based on synthetic spectra and non-grey atmosphere models which include dust formation and opacity, i.e. objects with \te\simle 2800 K. The interior of the most massive brown dwarfs is shown to develop a conductive core after 2\sim 2 Gyr which slows down their cooling. Comparison is made in optical and infrared color-magnitude diagrams with recent late-M and L-dwarf observations. The saturation in optical colors and the very red near-infrared colors of these objects are well explained by the onset of dust formation in the atmosphere. Comparison of the faintest presently observed L-dwarfs with these dusty evolutionary models suggests that dynamical processes such as turbulent diffusion and gravitational settling are taking place near the photosphere. As the effective temperature decreases below \te\approx 1300-1400 K, the colors of these objects move to very blue near-infrared colors, a consequence of the ongoing methane absorption in the infrared. We suggest the possibility ofa brown dwarf dearth in J,H,KJ,H,K color-magnitude diagrams around this temperature.Comment: 38 pages, Latex file, uses aasms4.sty, accepted for publication in Ap

    The cool atmospheres of the binary brown dwarf eps Indi B

    Full text link
    We have imaged ϵ\epsilon Indi B, the closest brown dwarf binary known, with VISIR at the VLT in three narrow-band mid-infrared bandpasses located around 8.6μ\mum, 10.5μ\mum and 11.3μ\mum. We are able to spatially resolve both components, and determine accurate mid-infrared photometry for both components independently. In particular, our VISIR observations probe the NH3_3 feature in the atmospheres of the cooler and warmer brown dwarfs. For the first time, we can disentangle the contributions of the two components, and find that % our photometry of ϵ\epsilon IndiBb is in good agreement with recent ``cloud-free'' atmosphere models having an effective temperature of Teff=800T_\mathrm{eff}=800 K. With an assumed age of 1 Gyr for the ϵ\epsilon Indi system, component Ba agrees more with Teff1100T_\mathrm{eff} \approx 1100 K rather than with Teff=1200T_\mathrm{eff}=1200 K, as suggested by SPITZER spectroscopic observations of the combined ϵ\epsilon Indi B system (Roellig et al., 2004). Even higher effective temperatures appear inconsistent with our absolute photometry, as they would imply an unphysical small size of the brown dwarf ϵ\epsilon IndiBa.Comment: 4 pages, 2 figure

    Impact of bromide and iodide during drinking water disinfection and potential treatment processes for their removal or mitigation

    Get PDF
    In this study, the impact of bromide and iodide on disinfected waters was examined and potential treatment technologies for their removal or mitigation were investigated. Distributed waters from two Western Australian drinking water sources were evaluated in terms of their bromide and iodide concentrations, disinfection by-product (DBP) formation, halogen-specific adsorbable organic halogen (AOX) formation and chlorinous odours after disinfection. In both systems, the brominated DBPs dominated the measured DBPs and, in both cases, the known DSPs accounted for only 30% of total organohalogens. Chloramination with a sufficient free chlorine contact time followed by ammonia addition, rather than preformed monochloramine, may be a viable mitigation strategy for the minimisation of I-OBPs, since exposure to free chlorine should promote the conversion of iodide to iodate, a safe form of iodine. This study has shown that bromide plays an important role in this process, mainly by enhancing the preferred conversion' of iodide to iodate. Ozone pre-treatment selectively oxidised iodide to iodate and minimised the formation of I-OB Ps. Complete conversion of iodide to iodate, while minimising the bromate formation to below the guideline value of 10 µg L-1 was achieved for a wide range of ozone concentrations in raw waters, including raw waters with high bromide concentrations

    Brown Dwarfs and the Cataclysmic Variable Period Minimum

    Get PDF
    Using improved, up-to-date stellar input physics tested against observations of low-mass stars and brown dwarfs we calculate the secular evolution of low-mass donor cataclysmic variables (CVs), including those which form with a brown dwarf donor. Our models confirm the mismatch between the calculated minimum period (Pmin ~ 70 min) and the observed short-period cut-off (~ 80 min) in the CV period histogram. We find that tidal and rotational corrections applied to the one-dimensional stellar structure equations have no significant effect on the period minimum. Theoretical period distributions synthesized from our model sequences always show an accumulation of systems at the minimum period, a feature absent from the observed distribution. We suggest that non-magnetic CVs become unobservable as they are effectively trapped in permanent quiescence before they reach Pmin, and that small-number statistics may hide the period spike for magnetic CVs.Comment: 10 pages; accepted for publication in MNRA

    Infrared Colors at the Stellar/Substellar Boundary

    Get PDF
    We present new infrared photometry for 61 halo and disk stars around the stellar/substellar boundary. These data are combined with available optical photometry and astrometric data to produce color--color and absolute magnitude--color diagrams. The disk and halo sequences are compared to the predictions of the latest model atmospheres and structural models. We find good agreement between observation and theory except for known problems in the V and H passbands probably due to incomplete molecular data for TiO, metal hydrides and H2_2O. The metal--poor M subdwarfs are well matched by the models as oxide opacity sources are less important in this case. The known extreme M subdwarfs have metallicities about one--hundredth solar, and the coolest subdwarfs have Teff3000_{eff}\sim 3000 K with masses \sim 0.09M/M_{\odot}. The grainless models are not able to reproduce the flux distributions of disk objects with Teff<_{eff} < 2500 K, however a preliminary version of the NextGen--Dusty models which includes homogeneous formation and extinction by dust grains {\it is} able to match the colors of these very cool objects. The least luminous objects in this sample are GD165B, three DENIS objects --- DBD0205, DBD1058 and DBD1228 --- and Kelu-1. These have Teff_{eff}\sim 2000 K and are at or below the stellar limit with masses \leq0.075M/M_{\odot}. Photometry alone cannot constrain these parameters further as the age is unknown, but published lithium detections for two of these objects (Kelu-1 and DBD1228) imply that they are young (aged about 1 Gyr) and substellar (mass \leq0.06M/M_{\odot}).Comment: ApJ, in press. 18 pages. Also available at ftp://ftp.jach.hawaii.edu/pub/ukirt/skl/dM_preprint

    Photophysical and structural characterisation of in situ formed quantum dots

    Get PDF
    Conjugated polymer–semiconductor quantum dot (QD) composites are attracting increasing attention due to the complementary properties of the two classes of materials. We report a convenient method for in situ formation of QDs, and explore the conditions required for light emission of nanocomposite blends. In particular we explore the properties of nanocomposites of the blue emitting polymer poly[9,9-bis(3,5-di-tert-butylphenyl)-9H-fluorene] together with cadmium sulphide (CdS) and cadmium selenide (CdSe) precursors. We show the formation of emissive quantum dots of CdSe from thermally decomposed precursor. The dots are formed inside the polymer matrix and have a photoluminescence quantum yield of 7.5%. Our results show the importance of appropriate energy level alignment, and are relevant to the application of organic–inorganic systems in optoelectronic devices
    corecore