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Abstract In this work a local inequality is provided which bounds the distance of an inte-
gral varifold from a multivalued plane (height) by its tilt and mean curvature. The bounds
obtained for the exponents of the Lebesgue spaces involved are shown to be sharp.
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1 Introduction

Regularity of integral varifolds is often investigated by use of an approximation by Lips-
chitzian single or multivalued functions. A basic property of such functions is the Sobolev
Poincaré inequality. In this paper a similar inequality is established for the varifold itself.
An inequality of this type has to involve mean curvature as simple examples demonstrate.
Considering a ball centered at a generic point and taking the limit as the radius approaches 0,
the contribution of the mean curvature drops out if and only if the exponents of the Lebesgue
spaces involved satisfy a certain inequality. The initial motivation to examine the validity of
a Poincaré type inequality was given by a question arising from Schitzle’s work in [15], see
below.

Basic definitions. First, some definitions will be recalled. Suppose throughout the intro-
duction that m,n € N and U is a nonempty, open subset of R”*", Using [16, Theorem
11.8] as a definition, u is a rectifiable [an integral] n varifold in U if and only if u is a
Radon measure on U and for u almost all x € U there exists an approximate tangent plane
Ty € G(n 4+ m,n) with multiplicity 0 < 6" (u, x) < oo of u at x [and 6" (u, x) € NJ,
G (n + m, n) denoting the set of n dimensional, unoriented planes in R”*" . The distributional
first variation of mass of u equals
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Sw)(n) = / div, ndu whenever n € Cl(U, R"™)

where div,, 1(x) is the trace of Dn(x) with respect to T . [|§1¢]| denotes the total variation
measure associated to §u and p is said to be of locally bounded first variation if and only if
6]l is a Radon measure. The tilt-excess and the height-excess of p are defined by

titex, (v, 0.7) 1= 0" [ [Tegu = TP da),
B, (x)

heightex , (x, 0, T) 1= 0" ? / dist(€ — x, T)>du(€)

B, (x)

whenever x € R"*" 0 < o < oo, Bg(x) CcU, TeGn+m,n);here S € G(n+m,n)is
identified with the orthogonal projection of R**" onto S and | - | denotes the norm induced by
the usual inner product on Hom (R R" ") see e.g. [6, 1.7.9]. From the above definition
of a rectifiable n varifold ;v one obtains that p almost all of U is covered by a countable
collection of n dimensional submanifolds of R"*" of class C!. This concept is extended
to higher orders of differentiability by adapting a definition of Anzellotti and Serapioni in
[3] as follows: A rectifiable n varifold x in U is called countably rectifiable of class C*®
[C¥1, k € N,0 < « < 1, if and only if there exists a countable collection of n dimensional
submanifolds of R"*™ of class C&% [C¥] covering 1 almost all of U. Throughout the intro-
duction this will be abbreviated to C*¢ [C¥] rectifiability. Note that C¥! rectifiability and
C*F1 rectifiability agree by [6, 3.1.15].

Known results. Decays of tilt-excess or height-excess have been successfully used by
Allard [1], Brakke [4] and Schiitzle [14,15]. The link to C2 rectifiability is provided by
Schitzle [15]. In order to explain some of these results, a mean curvature condition is intro-
duced. An integral n varifold in U is said to satisfy (H), 1 < p < oo, if and only if either
p > 1 and for some I;(,L € Lﬁ)c (1, R called the generalised mean curvature of /i,

G = — / H, endu whenever n € CL(U, R"™™) (Hp)

or p=1and
w is of locally bounded first variation; (Hy)
here o denotes the usual inner product on R"*" Brakke has shown in [4, 5.7] that
tiltex, (x, 0, Ty ) = 0x(0), heightexﬂ(x, 0, Txp) =0x(0) asp | 0
for i almost every x € U provided u satisfies (Hp) and
tiltex, (x, 0, Txpt) = ox 0>, heightex, (x, 0, Tx i) = oy (0*%) asp |0

for every ¢ > 0 for p almost every x € U provided p satisfies (H>). In case of codimension
1 and p > n Schitzle has proved the following result yielding optimal decay rates.

Theorem 5.1in [14]Ifm =1, p > n, p > 2, and p is an integral n varifold in U satisfying
(Hp), then

tiltex,, (x, 0. Txpt) = Ox(@?), heightex , (x, 0, Txjt) = 0,(0°) aso | 0

Sfor palmost all x € U.

@ Springer



A Sobolev Poincaré type inequality for integral varifolds 371

The importance of the improvement from 2 — ¢ to 2 stems mainly from the fact that the
quadratic decay of tilt-excess can be used to compute the mean curvature vector H,, in terms
of the local geometry of © which had already been observed by Schitzle in [13, Lemma 6.3].
In [15] Schiitzle provides the above mentioned link to C? rectifiability as follows:

Theorem 3.1 in [15] If u is an integral n varifold in U satisfying (H;) then the following
two statements are equivalent:

(1) pisc? rectifiable.
(2) For w almost every x € U there holds

tiltex,, (x, 0. Txt) = Ox(0%). heightex,, (x. 0. Txu) = Ox(0%) ase | 0.

The quadratic decay of heightex, implies C? rectifiability without the condition (H>) as was
noted in [15]. However, (1) would not imply (2) if ; were merely required to satisfy (H),)
for some p with 1 < p < 2n/(n+2), an example was be provided in [11, 1.5]. On the other
hand, it is evident from the Caccioppoli type inequality relating tiltex,, to heightex,, and
mean curvature, see e.g. Brakke [4, 5.5], that quadratic decay of heightex,, implies quadratic
decay for tiltex,, under the condition (H>). This leads to the following question:

Problem. Does quadratic decay u almost everywhere of tiltex,, imply quadratic decay p
almost everywhere of heightex,, under the condition (H2)? More generally, suppose that
is an integral n varifold in U satisfying (H),), 1 < p < oo,and0 <a < 1,1 < g < oo.
Does

1/q
lim supr_“_"/q / |Tepe — Toepel? dpa(§) < 00
10 o
for p almost all x € U imply
1/q
limlsoup plmen/a / dist(€ — x, Tep)? du(€) <00
r

B, (x)

for p almostall x € U?

Results of the present paper. The answer to the second question will be shown in 4.11—
4.13 to be in the affirmative if and only if either p > nor p < n and ag < np/(n — p),
yielding in particular a positive answer to the first question. The main task is to prove the
following theorem which in fact provides a quantitative estimate together with the usual
embedding in L7 spaces.

Theorem 4.11 Suppose Q € N, 0 < o < 1,1 < p < n, and | is an integral n varifold in
U satisfying (Hp).
Then the following two statements hold:

M Ifp<nl<g <n1<g <min{-24 1. Lpp}, then for ju almost all a € U with

n—qp’ o« n—
0" (u, a) = Q there holds

lim sup e/ I dist(: —a, Tap) 2924 B, (a))
rl0

< Iy lim sup r /a1 1T — TaptllLar ue B, (a))
rl0

where I'(1) is a positive, finite number depending only on m, n, Q, q1, and q>.
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372 U. Menne

2) If p=n,n < q <00, then for i almost all a € U with 0" (i, a) = Q there holds

lim sup r 1| dist(- — @, T,p) lLoo (i B, (a))
rl0

< Ty limsupr 4| T, — Tupll Lo e B, @)
rl0

where T (o) is a positive, finite number depending only on m, n, Q, and q.

Here T}, denotes the function mapping x to 71« whenever the latter exists. The connection
to higher order rectifiability is provided by the following simple adaption of Schitzle [15,
Appendix A] by use of [17, VI.2.2.2, VI.2.3.1-3].

Lemma Suppose 0 < a < 1, u is a rectifiable n varifold in U, and A denotes the set of all
x € U such that Ty exists and

limsup o ™"~ 17¢ / dist(§ — x, Typ) dp(§) < oo.
0
el B

Then L A is Cb% rectifiable.

The analog of Theorem 4.11 in the case of weakly differentiable functions can be proved
simply by using the Sobolev Poincaré inequality in conjunction with an iteration procedure.
In the present case, however, the curvature condition is needed to exclude a behaviour like
the one shown by the function f: R — R defined by

o0
fx) = 2(27"))([2471,24[()6) whenever x € R
i=0

at 0; in fact an example of this behaviour occurring on a set of positive £! measure is provided
by f!/? o g where g is the distance function from a compact set C such that £!(C) > 0 and
forsome 0 < A < 1

limiionf r’3/2£1([x 4+ Ar,x +r[~C) >0 wheneverx € C.
r

Therefore the strategy to prove Theorem 4.11 is to provide a special Sobolev Poincaré type
inequality for integral varifolds involving curvature, see Theorem 4.4. In the construction
weakly differentiable functions are replaced by Lipschitzian Q valued functions, a Q valued
function being a function with values in Qo (R") = (Rm)Q/ ~ where ~ is induced by the
action of the group of permutations of {1, ..., O} on (RMQ.

Method of proof. Roughly speaking, the construction performed in a ball B.(a) C U
proceeds as follows. Firstly, a graphical part G of u in B,.(a) is singled out. The complement
of G can be controlled in mass by the curvature, whereas its geometry cannot be controlled
in a suitable way as may be seen from the example in [11, 1.2] used to demonstrate the
sharpness of the curvature condition. On the graphical part G the varifold i might not quite
correspond to the graph of a Q valued function but still have “holes” or “missing layers”.
Nevertheless, it will be shown that, on G, u behaves just enough like a Q valued func-
tion to make it possible to reduce the problem to this case. Finally, for Q valued functions
Almgren’s bi Lipschitzian equivalence of Qo (R™) to a subset of RPQ for some P € N
which is a Lipschitz retract of the whole space directly yields a Sobolev Poincaré inequality.
More details about the technical difficulties occurring in the construction and how they are
solved will be given at the beginning of Sect. 3.
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Organisation of the paper. In Sect. 2 some basic properties of Q valued functions are
provided. In Sect. 3 the approximation of x by a Q valued function is constructed. In Sect. 4
the approximation is used to prove the Theorems 4.4 and 4.11.

The results have been previously published in the author’s PhD thesis, see [10].

Additional notation. The notation follows [16] and, concerning Q valued functions,
Almgren [2, T.1(20), 1.1(1), (9)=(11)]. In particular, the functions 5, ,: R*™ — R
are given by n, ,(x) = rl(x —a) fora,x €e R (0 < r < oo and N (k) denotes the
best constant in Besicovitch’s covering theorem in R, see [16, Lemma 4.6]. Additionally
to the symbols already defined, im f, dmn f and f|A denote the image of f, the domain
of f and the restriction of f to a set A whenever f is a function, T is the orthogonal
complement of T for T € G(n + m, n), y, denotes the best constant in the isoperimetric
inequality as defined in Definition 3.3, and f(¢) denotes the ordinary push forward of a
measure ¢ by a function f,i.e. f(¢)(A) := & (f~1(A)) whenever A C Y, if ¢ is a measure
on X and f : X — Y. Definitions are denoted by ‘=" or, if clarity makes it desirable, by
“:=". To simplify verification, in case a statement asserts the existence of a constant, small
(¢) or large (I"), depending on certain parameters this number will be referred to by using
the number of the statement as index and what is supposed to replace the parameters in the
order of their appearance given in parentheses, for example €3 4(m, n, 1 — §3/2). Finally, as
in Almgren [2, T.1(23)] the join f x g of twomaps f: A — B and g: A — C is defined by
(f x g)(a) = (f(a), g(a)) for a € A. For the convenience of the reader the notation used
from Almgren [2] is recalled in 2.1 and 2.2.

2 Basic facts for Q o (R™) valued functions

The purpose of this section is to collect some results concerning Q valued functions (cf. Alm-
gren [2]). Among them an elementary but useful decomposition of a Lipschitzian Q valued
function into a countable collection of ordinary Lipschitzian functions is proved in Theorem
2.5. This decomposition directly entails both the rectifiability of the O valued graph which
had been proved by Almgren using the compactness theorem for integral currents and also a
simple proof of Stepanoff’s theorem for Q valued functions in Theorem 2.8. Other proofs of
the special case of Rademacher’s theorem avoiding Almgren’s bi Lipschitzian embedding of
Oo (R™*™) into a EBuclidean space can be found in Goblet [8] and De Lellis and Spadaro [5,
Theorem 1.13]. Also, the Sobolev Poincaré inequality for Q valued functions and a Lipschitz
extension theorem is given, see Theorems 2.10 and 2.12.

2.1 (c¢f [2,T1(20), 1.1(1)]) Suppose Q € N and V is a finite dimensional Euclidean vector
space.

For x € V define [[x]] as the O dimensional current in V associated to the Dirac measure
atx, ie. [x](f) = f(x) for f € C°(V). The space Q (V) is defined to be the set of all

0 dimensional integral currents R such that R = ZIQ: 1 [x:1 for some xp,...,x9 € V. A
metric G on Q (V) is defined such that

0 0 0 12
g Dol D Iyl | =min{ [ D i —ye* ] 7 eSQ)
i=1 i=1 i=1

whenever x1,...,Xx0,y1,...,y0 € V where S(Q) denotes the set of permutations of
{1,..., Q}. Note that in case T = Zlel [x;1 for some x1,...,xp € V,
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374 U. Menne

sptT = {x1,....x0). |IT] = ia
i=

0°(IT |, x) = #{i :x; = x} wheneverx € V

where §, denotes the Dirac measure at x.
Additionally to Almgren’s notation, define the Q valued graph of f by

grath f={(x,v) e X x V:vesptf(x)}
whenever f: X — Qo(V).
2.2 (cf. [2, 1.1(9)—(11)]) Suppose m,n, Q € N.

A function f: R" — Qo (R™) is called affine if and only if there exist affine functions
fi:R" > R™ i =1,..., O such that

Y
f(x) =D [fi(x)] wheneverx € R".
i=1

f1, ..., fo are uniquely determined up to order. One defines semi norms such that

1/2
9]
[f] :(§|Dﬁ(a)|2) , I fI=limsupG(f(x), f(a))/Ix —al

X—a
whenever a € R”. Among their basic properties are the following inequalities:

max{||Dfi(@)|:i =1,..., 0} < |l < Q" max{||Dfi(a)|:i = 1,..., O},
Il <m'2Q'2IfI, Lipf=Ifll<Ifl
Letae ACR", f: A— Qo(R™). f is called affinely approximable at a if and only if

A contains a neighbourhood of a and there exists an affine function g: R" — Qo (R™) such
that

lim G(f(x), g(x)/Ix —al = 0.

f is called approximately affinely approximable at a if and only if there exists an affine
function g: R" — Qo (R™) such that (see [6, 2.9.12, 3.1.2])

ap lim G(f(x), g(x))/|x —a| = 0.

xX—a

The function g is unique in both cases and denoted by Af (a) and ap Af (a) respectively. f
is called strongly affinely approximable at a if and only if A f (a) has the following property:
IfAf(a)(x) = ZIQ: 1 Lgi (x)] whenever x € R" for some affine functions g;: R* — R™ and
gi(a) = gj(a)forsomei and j,then Dg;(a) = Dg;(a).Similarly, one defines approximately
strongly affinely approximable at a.

If f is affinely approximable [approximately affinely approximable] at a, then

IAf (@I <Lip f [llapAf(a)ll < Lip f].

Definition 2.3 (cf. [6, 3.3.1]) Form,n, Q e N,a e R"™™ 0 <r < o0,V € G(n+m, m),
and0 < s < 1 let

X(a,r,V,s) = {x e R*T" cs N dist(x —a, V) < |x —al <r}.
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2.4 Sometimes it will be made of use the fact that f C dmn f x im f for any function f in
order to simplify notation.

Theorem 2.5 Suppose m,n, Q € N, A is L measurable, and f: A — QoR™) is a
Lipschitzian function.
Then the following two conclusions hold:

(1) There exists a countable set I and for each i € I a function f;: A; — R™ such that A;
is L" measurable, A; C A, Lip fi < Lip f and

#i: filx) =y} = 90(||f(x)||, y) whenever (x,y) € A x R™.

If A is a Borel set, then f; and A; may be chosen to be Borel sets in R" x R™ and R"
respectively, see 2.4.

(2) The function f is approximately strongly affinely approximable and whenever I and f;
satisfy the conditions of (1)

apAf(a)(v) = > [fi(a) +ap Dfi(a)(v)] wheneverv € R"
icl(a)

at L" almost alla € A where [(a) ={i € I :a € A;}.
Proof of (1) Since the closure of f in R" x Qo (R™) is a Lipschitzian function with the
same Lipschitz constant, one may assume A to be closed. Moreover, assume Lip f > 0 and
let E = graph,, f,s = (1 + (Lip £)2)~Y2 and p: R* x R™ — R", g: R" x R" — R the
projections.
If¢£ € E,0 < 2r <dist(g(&), (spt f(p(&))) ~{q(€)}),and z € E N B,(§), then
q(§) € spt f(p(&)), q(z) € sptf(p(2)),
lg(z) —q@&)] < lz—&l <r, lq(@) —q(&)]=dist(q(z), spt f(p(£))),
lg(z) —q &) < G(f(p(2), f(p§))) < (Lip fHIp) — p®)l,
lz—&l <57 p@ — p@E), z¢X(E rkerp,s).

Therefore E is the union of the sets
E; ={(cE:ENX(E,1/jkerp,s) =0}

corresponding to j € N.

Since E; C E, itfollows from the proof of [6, 3.3.5] that each subset of E; with diameter
less that 1/ is a Lipschitzian function with Lipschitz constant at most (s =2 — 1)!/2 = Lip f.
Using this fact and noting that graph, f is closed, one constructs a sequence of closed sets
gj withLipg; < Lip f, here Lip# = 0, and | J{g;:j € N} = graph,, f and defines

hiw= (g~ s | Nt y:0°Ur@ilyn=v) forjeNv=1....0.
k<j

Since 6°(|| S|, ) depends upper semi continuously on (y, S) € R” x 0 o (R™), the functions
hj,, and hence dmn h ,, are Borel sets by [6, 2.2.10(2)]. Arranging I and f; such that each
h,, occurs exactly v times among the f; the conclusion follows. O

Proof of (2) Fora € A note that #1 (a) = Q and

fx) = Z [fi(x)] whenever x € ﬂ dmn f;.

iel(a) i€l(a)
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By [6,2.9.11,3.1.2,3.1.7] £" almost all a € A satisfy

i € I(a) implies f; is approximately differentiable at a,
i,j €1(a), fi(a) = fj(a) implies ap Df;(a) = ap Df;(a).

At such a point a there holds 6" (L‘," LR~ (;es(q) dmn fi, a) = 0, and f is therefore
approximately strongly affinely approximable with

ap Af(a)(v) = Z [ fi(a) + ap Df;(a)(v)] forv € R".

iel(a)

[m}

Remark 2.6 Instead of referring to [6, 2.2.10(2)] in the proof of (1), one could have used the
more elementary fact that p(B ~ C) is a Borel set whenever B and C are closed subsets of
R” x R™,

Remark 2.7 In [8, Sect. 5] Goblet gives an example withn = 2, m = 2 and A the unit sphere
in R? such that no continuous function g: A — R™ satisfies g(x) € spt f(x) whenever
x € A. Hence, in general the domain of the functions f; will not equal A.

Corollary 2.8 Suppose m,n, Q e N, A C B CR", Bisopen, f: B— Qo(R"™), and

limsup G(f(x), f(a))/|x —a| < oo whenevera € A.

X—a

Then f is strongly affinely approximable at L™ almost all points of A.

Proof The proof follows closely [6, 3.1.9].
The set A is contained in the union of

Cj=BN{z:G(f(). f(2) < jlx —z| forx € By ;;(2))

corresponding to j € N. Verifying as in [6, 3.1.9] that C; is closed, one expresses C; as the
union of closed sets Cj 1, Cj 2, Cj 3, ... with diameters less than 1/; and notes that f|C;
is Lipschitzian. From Theorem 2.5 and [6, 2.9.11] one infers that at £" almost all points x
of C; x the function f|C; s is approximately strongly affinely approximable and R" ~ C; x
has density O at x, hence f is approximately strongly affinely approximable and R" ~ C;
has density O at x, hence f is strongly affinely approximable at x by [6, 3.1.5] applied with
(2) replaced by G(f(2), ap Af (x)(2)). D

Definition 2.9 Suppose m,n, Q e N, S € Qp(R™), 1 < g < oo, A is L" measurable, and
fi1A— Qo[R")isan L" L A measurable function.

Then the g height of f with respect to S is defined to be the L7 (L" . A) (semi) norm of
the function mapping x € A to G(f(x), S), denoted by h,(f, S), and, if f is additionally
Lipschitzian, then the ¢ filt of f is defined to be the L9 (L" . A) (semi) norm of the function
mapping x € A to |ap Af (x)l, denoted by 1, (f). Moreover, the g height of f is defined to
be the infimum of the numbers 4, (f, S) corresponding to all § € Qo (R™) and denoted by

hq(f)-

Theorem 2.10 Suppose m,n, Q € N, f: }__?’1’(0) — Qo@®™), and Lip f < oco.
Then the following two statements hold:
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(1) If1 < q < n,q* =qn/(n—q), then there exists a positive, finite number I' (1) depending
only on m, n, Q, and q such that

hg«(f) < Tyt (f).

(2) If n < q < oo, then there exists a positive, finite number I'(2) depending only on m, n,
0, and q such that

heo (f) < T2y t4(f).

Proof Defining P, §: QoR™) — RPQ and p: R’ — imé£ asin Almgren [2, 1.2(3),
1.3(1)] and noting, using Almgren [2, 1.2(3), 1.3(1), 1.4(3)], that

Elopot = 10o@®R™), Lip& < oo, Lipé~! < o0, Lipp < oo,
G(f(x), 7' (p(2))) < Lip& " Lip pl&(f(x)) —z| forx € BI(0),z € RP?,
ID(& o f)(x)| < Lip&|Af(x)| forx € dmnD(£ o f),

the assertion is readily deduced from classical embedding results (which can be deduced for
example from [7, Lemma 7.14] using estimates on convolution (cf. O’Neil [12]) for part (1)
and Holder’s inequality for part (2)) applied to & o f. O

Remark 2.11 The use of Almgren [2, 1.3(1)], i.e. the use of o, can be replaced by a more
elementary argument, see De Lellis and Spadaro [5, Proposition 2.12].

Theorem 2.12 (cf. [2, 1.3(2)])
Supposem,n, Q e N, ACR", and f: A — Qo[R™).
Then there exists g: R" — Q o (R™) such that

glA=f, Lipg <T Lipf

where T is a positive, finite number depending only on m and Q.

Definition 2.13 Suppose m,n, Q € N,and T € G(n + m, n).
Then P is called a Q valued plane parallel to T if and only if for some S € QQ(TL)

p= (90(||S||, )o Tl) M.

S is uniquely determined by P. For any two Q valued planes P; and P, parallel to T associated
to §1, 9 € QQ(TL) one defines

Gg(P1, P) :=G(S1, $2).
In particular, if § = Zinl [z;] for some z1, ...,zp € T, then

Q Y
(NS ZSZ“ P = Z'H” L{x e R . T1(x) = zi}
i=1

i=1

where 8, denotes the Dirac measure at the point x.

214 If 0 <d <oo,m e N, S, T € Qp(R™), and for each subset X of spt S

> 0°UISI 0+ D 0T, y) < 0

xeX yeY
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where ¥ = (spt T') ~ [ J,cx B, (%), then

G(s,T) < 0'2d;
in fact if § = Zlel [x1, T = lezl [yl for some xi,...,xQ,y1,...,y0 € R” one
may verify the existence of a permutation o of {1, ..., Q} such that |[x; — y, ()| < d for

i €{1,..., O} by Hall’s theorem on perfect matches, see e.g. [9, Theorem 1.1.3].

3 Approximation of integral varifolds

In this section an approximation procedure for integral n varifolds 1 in R**" by Q valued
functions is carried out. Similar constructions are used in [2, 3.1-3.12] by Almgren and in
[4, 5.4] by Brakke. Basically, a part of i which is suitably close to a Q valued plane is
approximated “above” a subset Y of R” by a Lipschitzian Q valued function. The sets where
this approximation fails are estimated in terms of both © and £" measure.

Taking Brakke’s version as a starting point, in order to obtain an approximation useful for
proving Theorems 4.4 and 4.11 in the next section, the following three problems had to be
solved.

Firstly, in the above mentioned estimate one can only allow for tilt and mean curvature
terms and not for a height term as it is present in Brakke [4, 5.4]. This is done using a new
version of Brakke’s multilayer monotonicity in [4, 5.3] which allows for variable offsets, see
Lemma 3.11.

Secondly, the seemingly most natural way to estimate the height of © above the com-
plement of Y, namely measure times maximal height 4, would not produce sharp enough
an estimate. In order to circumvent this difficulty, a “preliminary graphical part” H of u is
used which is larger than the part where u equals the “graph” of the Q valued function and
also slightly larger than the “graphical part” G defined in terms of mean curvature used in
the statement of Theorem 4.4. Points in H still satisfy a one sided Lipschitz condition with
respect to points above Y, see Lemmas 3.12(2) and 3.15 (4). Using this fact in conjunction
with a covering argument in Lemma 3.15 (6) the actual error in estimating the g height in
a ball Bt (¢) where E”(B,(;‘) NY) and L”(B,({) ~Y) are comparable, can be estimated by
L"(B,(¢)~Y)!4 . t instead of £"(B,(¢) ~Y)!/9 - h; the replacement of & by ¢ being the
decisive improvement which allows to estimate the ¢* height (¢* = nqg/(n—¢q), 1 < q < n)
instead of the g height in Theorem 4.4.

Thirdly, to obtain a sharp result with respect to the assumptions on the mean curvature,
all curvature conditions are phrased in terms of isoperimetric ratios in order to allow for
the application of the estimates in [11]. In this situation it seems to be impossible to derive
monotonicity results from the monotonicity formula (cf. [16, (17.3)]). Instead, it is shown
that nonintegral bounds for density ratios are preserved provided the varifold is additionally
close to a plane, see Lemma 3.9. The latter result appears to be generally useful in deriving
sharp estimates involving mean curvature.

Comparing the present construction to Almgren’s, one notes that his version does not con-
tain a height term and establishes the important one sided Lipschitz condition in [2, 3.8 (4)].
However, both properties are proven only under a L* smallness condition on the mean
curvature. Almgren uses an elaborate inductive construction obtaining explicit estimates by
use of the monotonicity identity in Allard [1, 5.1 (1)]. These estimates provide quantitative
control of the effect of prescribing a small Lipschitz constant for the approximating function
on the accuracy of the approximation in mass; a feature which is apparently important for
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the applications in the course of that paper. Since such kind of control is not needed here and
since explicit estimates cannot be easily derived from the present rather weak conditions on
the mean curvature, contradiction arguments in Lemma 3.11 and Lemma 3.12 together with
the identification of the “preliminary graphical part” are used to establish the afore-mentioned
two properties of Almgren’s construction in the present setting. In fact, even in the case of
multiplicity 1, deriving explicit estimates is connected to determining the best value in the
isoperimetric inequality, see [11, 2.4-6].

31 Ifm,neN,a e R""" 0 <r <00, T € G(n+m,n),and u is a stationary, integral n
varifold in B, (a) with Ty = T for u almost all x € B,.(a), then Tl(spt W) is discrete and
closed in TJ-(B,. (a)) and for every x € spt

y€B.(a), y—x €T implies 0"(u,y) =60"(u,x)€N;
hence with Sy = {y € B.(a):y —x € T}
ne Sy =0"(u, x)H" LSy whenever x € B, (a).

A similar assertion may be found in Almgren [2, 3.6] and is used by Brakke in [4, 5.3 (16)].

Lemma 3.2 Supposem,n e N,0<§<1,0<s<1,and0 <M < oc.
Then there exists a positive, finite number & with the following property.
IfacR"™" 0 <r <00, TeGmn+m,n),0<d<o000<t<o0eR"™

max{d,r} < Mt, ¢eB;""O)NT, d+t<r,
W is an integral n varifold in B, (a) with locally bounded first variation,
18]l (B, (@) < & u(B.(@)' V", u(B,(a)) = Mwur",

/ [Tep — T|dp(§) < e u(B,(a)),
B, ()

1(By(@) = dwn" for0 <o <r,
then
px € Bi(a+¢): T (x —a)| > slx —al}) = (1 — S)wat".

Proof If the lemma were false for some m,n e N0 <§ <1,0<s < 1l,and0 <M < o0
there would exist a sequence ¢; with g; | 0 asi — oo and sequences a;, 1, T;, d;, t;, i, and
i showing that €; does not satisfy the conclusion of the lemma.

One could assume for some 7' € G(n + m, n), using isometries and homotheties,

=T, ri=1, a,=0

for i € N. Therefore passing to a subsequence, there would exist 0 < d < 00,0 <t < o0,
g € R such that

di —d, ti—>t, & —~> ¢
as i — 00. There would hold

max{d, 1} < Mt, ¢eB/™O)NT, d+t<1,
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in particular # > 0. Possibly passing to another subsequence, one could construct (cf. Allard
[1, 6.4]) a stationary, integral n varifold u in B?*’" (0) with

Tew =T for u almostall x € Bf*m 0)

such that
/¢du,- - /q&du for i — oo for ¢ € CO(BI(0)).

Since any open subset of Rt with compact closure in {x € B,(¢):|T (x)| > s|x|} would
be contained in {x € B, (&) 1T (x)| > s|x|} for large i, one could estimate

w({x € B,(©): 1T ()] > slx]))
<liminf i ({x € B, (&) 1T ()] > slx[}) < (1 = Sant”.

This would imply by 3.1 that O ¢ spt u in contradiction to

M(ég+m(0)) > lim sup ﬂi(ég+m(0)) > San" for0 <o < 1.

i—00

m}

Definition 3.3 Whenever n € N the symbol y,, will denote the smallest number with the
following property:

If m € Ng and p is a rectifiable n varifold in R*™" with u(R**") < oo and
18| (R"™T™M) < oo, then

w(fx e R™™ 0" (1, x) > 1)) <y @RV 7 8[| (RTHM).

Properties of this number are given in [11, Sect. 2], in particular y, < oo; see also Allard [1,
Theorem 7.1] or [16, Lemma 18.7, Theorem 18.6].

Lemma 3.4 (cf. [11, 2.6]) Suppose m € No, n € N, and § > 0.

Then there exists a positive number € with the following property.

Ifa € R™" O < r < oo, uis a rectifiable n varifold in B, (a) of locally bounded first
variation such that 6" (i, x) > 1 for w almost all x € B,(a), a € spt u, and

I1811(By(@) < Qya) ™' u(Bya)' ™" for0 <o <r,
1811 (B, (@) < & w(B,(a)'~"/",
then

W(B,(@) = (1 — Hwyr".

3.5 Suppose —o0 < a < b < 00,1 =[a,b], f: I — Risnondecreasing and continuous
from the left, g : I — R is continuous, and f(a) > g(a), f(b) < g(b).
Then there exists £ with a < & < b such that

f(E)=g#), and f(t) > g(t) whenever& >t e l;

in fact one may take £ = inf{r € I : f(t) < g(1)}.

Lemma 3.6 (Multilayer monotonicity) Suppose m,n, Q € N,0 <§ < 1,and0 <s < 1.
Then there exists a positive, finite number & with the following property.
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IFXCR™ T eGn+m,n),0<r < oo,
[T (y —x)| <s|ly — x| wheneverx,y € X,
w is an integral n varifold in | J .. x B, (x) with locally bounded first variation,

00w, x) > Q0 —1+3,

xeX

and whenever 0 < o <r,x € X Nsptu
I81(B, (x)) < & w(B,(x))' =", / |Tep — T1dp(€) < & (B, (x)),
B, (x)
then
M(U BQ(x)> > (0 — 8)wyo" whenever0 <o <r.
xeX

Proof The proof follows closely Brakke [4, 5.3].

If the lemma were false for some m,n, Q € N,0 < 3§ < 1/2,and 0 < s < 1, there would
exist a sequence ¢; with ¢; | 0 asi — oo and sequences X;, T;, r;, and p; showing that ¢;
does not satisfy the conclusion of the lemma.

Clearly, one could assume for some 7' € G (n + m, n)

T, =T fori €N,
X; C sptu; fori € N, and in view of Lemma 3.4 also
#X; < Q fori e N.

One would observe that 3.5 could be used to deduce the existence of a sequence 0 < ¢; < r;
such that

wi | U By @] < (Q—0wnlen",

xeX;

wi | U By | = (Q—1+8/2)w,0" whenever0 < ¢ < 0.

)CEXI'

There would hold for x € X;,i € N
184 [l (B, (x)) < &i(Qan)' /" (o))",

/ Tepts — T)djui ) < & Qan (o)™

By, ()

Rescaling, one would infer the existence of sequences of integral n varifolds v; in R* ™",
X; C sptv;,ande; withe; | Oasi — oosuchthatforsomeT € G(n+m,n),0 < M < oo,
0eN0O<d<1/2,and0 <5 < 1
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#X; < Q, s T(y—x)|<ly—x| forx,yeX;,
IovilBy ) < e, [ [Tev = Tlaw®) < e forx € X,
BI(X)
vil U B ] <@ =8,

xeX;

Vi U Bg(x) > (0 —1+4+68/2)w,0" whenever0 < o < 1.

xeX;

The proof will be concluded by showing that objects with the properties described in the
preceding paragraph do not exist. If they existed, one could assume first

X; C By"(0) fori eN

by moving pieces of v; by translations (here v is a piece of v; if and only if v = v; L Z for
some connected component Z of | J B (x)) and then, since X; # @ fori € N, passing to
a subsequence,

xeX;

X; — X in Hausdorff distance asi — oo, #X < Q

for some nonempty, closed subset X of B;’,,er (0) (cf. [6, 2.10.21]). Noting that given 0 <
01 <02 <1

UBo 0 ¢ U B0, B, > JB,@

xeX xeX; xeX xeX;

for large i, one could assume, possibly passing to another subsequence (cf. Allard [1, 6.4]),
that for some stationary, integral n varifold v in

U= B
xeX
satisfying
T.v=T forvalmostallx € U
there would hold

/(pdvi — /(pdv asi — oo for g € COR"™™) with spty C U.

The inclusions previously noted, would show
v(U) = (Q — 8)wn,

v(UBg(x)) > (0 — 14 8/2)wp0" for0 <o <1.
xeX
Since for y,z € X
sTHT (v = x)] < |y —xl,
(xeR"™:y —xeT)N{xeR"™:z —xeT}=0 ify+#z,
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these inequalities would imply by 3.1

Q—-1+48/2< lirglionf v ( U BQ(x)) /(@n0™)
xeX
= 20", x) =v(U)/w, < Q = 6;
xeX
a contradiction to >, .y 0" (v, x) € N. |

Lemma 3.7 Suppose0 <M <oo,M ¢ NNO< i <Ay <lmneNTeGn+m,n),
F is the family of all stationary, integral n varifolds in B} *" (0) such that

Tew =T forpalmostall x € BIH"”(O), ,u(BiH'm(O)) < Mw,,
and N is the supremum of all numbers
(@nr™) ™ (B (0))

corresponding to all u € F and »1 <r < ).
Then for some n € F and some Ay <1 < Ay

N = (@)~ (B (0) < M.
Proof The proof uses the structure of the elements of F' described in 3.1. Since
(@nr™) ™ (B (0))

depends continuously on (i, r) € F X [A1, A2], the first part of the conclusion is a conse-
quence of the fact that F is compact with respect to the weak topology by Allard [1, 6.4]. To
prove the second part, one notes

(r* —0H"?* < (1 — 0»"*" whenever0 <o <r <1,

defines ® : T (spt ) — N such that ® o T+|B}*"(0) = 6" (i, -) and computes

(B (0) = > O, (r? — x|/
xeTL(B™ (0)Nspt 1)

IA

) OX)w, (1 — [x|?)"/2 | "

xeTL (B (0)Nspt 1)
< w(BIO)" < Maor™.
If spt w ¢ T, then the first or the second inequality in the computation is strict. Otherwise,

the last inequality is strict because M ¢ N. O

Remark 3.8 Alternately, the second part can be obtained by use of the monotonicity formula
(cf. [16, (17.9)]).

Lemma 3.9 (Quasi monotonicity) Suppose0 < M < oo,M ¢ N,O < A < 1,andm,n € N.
Then there exists a positive, finite number ¢ with the following property.

Ifa e R™" 0 < r < oo, uis an integral n varifold in B, (a) with locally bounded first
variation,

(B, (a)) < Mw,r",
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and whenever 0 < o <r
181 (B, (a)) < & p(B,(a)' =",
/ |Tepe — Tdu(x) < Su(ég(a)) forsome T € G(n +m,n),
ég(a)
(here 0° := 1), then
M(Bg(ll)) < Mw,0" whenever( < o < Ar.
Proof Using induction, one verifies that it is enough to prove the statement with A%r < o <

Ar replacing O < o < Ar in the last line which is readily accomplished by a contradiction
argument using Lemma 3.7 and Allard’s compactness theorem for integral varifolds [1, 6.4].0

Remark 3.10 Note that in any case (B, (a)) < Mw,r" implies
(w,,Q")flu(BQ(a)) < M) whenever Ar < g <r.

Lemma 3.11 (Multilayer monotonicity with variable offset) Suppose m,n, Q € N, 0 <
M <00, 6>0and0<s < 1.

Then there exists a positive, finite number ¢ with the following property.

FXCR T eGn+mn),0<d<o00,0<r<oo0<t<oo f:X— R

IT(y =0l <sly=x[, IT(f(y)—=fONI=sIf)—=f&)I
fx)—xeB™O)NT, d<Mt, d+t=<r
forx,y € X, uis an integral n varifold in \ ) .. x B, (x) with locally bounded first variation,

D00, x) = Q =148, w(B,(x)) <Mw,r" forx € X Nsptu,
xeX

and whenever 0 < o <r,x € X Nsptu

[81l1(B,(x)) < & (B, (x)' 1", / |Tep — T1du(E) < & u(B,(x)),
By(x)
then
ul JeB,(fa):IT(y —x)| > sly —XI}) > (Q — 8)wat".
eX

Proof If the lemma were false for some m,n,Q € N,0 < M < 00,0 < § < 1, and
0 < s < 1, there would exist a sequence ¢; with ¢; | 0 asi — oo and sequences X;, T;, d;,
ri, ti, fi, and u; showing that ¢; does not satisfy the conclusion of the lemma.

In view of Lemma 3.9 and Remark 3.10 one could assume d; + #; = r; fori € N by
replacing M by 2M. Using isometries and homotheties, one could also assume for some
T eGn+m,n)

Ti=T, ri=1
for i € N. Finally, one could assume, possibly replacing M by a larger number,
Xi Csptui, #Xi <Q, X;C B (0)
fori e N.
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Therefore passing to a subsequence (cf. [6, 2.10.21]), there would exist a nonempty,
closed subset X of Bg’f’" (0),0 <d < 00,0 <t < 00, and a nonempty, closed subset f of
R x R" such that #X < Q,

di > dandt; —> tasi — oo,

X; — X and f; — f in Hausdorff distance as i — oo.
There would hold
sTUT(y—x)|<|y—x| forx,yeX, d<Mt, d+t=1, t>0.
Moreover, since

(=) 2y =] = |TH0i = x)

= |THChG0 = fi)| 1600 = fi)]

for x;, y; € Xi,andi € N, f were a function and one could readily verify dmn f = X, and
f(x)—xeB™O)NT forxeX,
sTHT(F ) = FODI < 1f ) = f()] forx,y € X.

Possibly passing to another subsequence, one could construct (cf. Allard [1, 6.4]) a sta-
tionary, integral n varifold p in U := | cx B, (x) with

Typw =T for ualmostall x € U

such that
/(pdpL,' — /godu asi — oo for g € COR"™) with spte C U.

According to Lemma 3.6 one would estimate for large i

i U B,(x) | = (Q — §)wyo" whenever0 <o <1,

xeX;

hence

,u(U Bg(x)) > (Q — §)wpo" whenever 0 < o < 1.

xeX

Therefore, passing to the limit o |, 0, one would infer the lower bound (noting 3.1)

20" (n,x) = Q0 —3.

xeX

For y,z € R*™, 0 < g < oo define V(y, z, 0) to be the set of all x € B,(z) such that

s~ YT (y —x)| > |y — x|, and note that every open subset of R+ with compact closure in
Uyex V(x, f(x), 1) would be contained in UxeX,- V(x, fi(x), t;) for large i; hence

u(UV(x,f(x>,r))shminfm U Ve i) ) < (@ = 9.

xeX xeX;
On the other hand 3.1 would imply in conjunction with the fact

xeR"™ . x—yeTIN{xeR"™:x —zeT}=0
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for y, z € X with y # z and the lower bound previously derived

M(U Vix, f(x), t)) > (Z 0" (e, X)) wpt" = (Q — §)wnt",
xeX

xeX

hence > .y 6" (u, x) = Q — § which is incompatible with Q0 — § ¢ N. ]

Lemma 3.12 Suppose m,n,Q e N0 <§ <1,0<5H <1,0<s<10=<s <1,
0<M < oo, and 0 < A < 1 is uniquely defined by the requirement

(so)2 )n/Z I

a2 — (1 =
1=2)""= 52)+<1_(SO)2

Then there exists a positive, finite number ¢ with the following property.
FXCRY T eGmn+mn),0<d<00,0<r<o00,0<t<o0{eR"™"
#T(X)=1, ¢eB™O)NT, d<Mt, d+t=<r,
w is an integral n varifold in | J . x B, (x) with locally bounded first variation,
0" (u,x) €N forx e X,

20" (. x) =0, p(B.(x)) < Maw,r" forxeX,
xeX

and whenever 0 < o <r,x € X
18,11 (B, () < & (B, ) ~1/", / | Tep = T1dp(€) < & u(B,(x))
B, x)
satisfying

M(U {yeB,(x+0):|T(y —x)| > soly —XI}) <(Q+1-8)wat",

xeX

then the following two statements hold:

(1) If0 < © < At, then

u(U Bxx)) < (Q+d)w,t".

xeX
(2) If& € R™™ with dist(§, X) < At/2 and
1(By(§)) = 810" for 0 < ¢ < 81 dist(§, X),
then for some x € X
IT(¢ —x)| = 51§ — x|

Proof of (1) One may first assume max{8;, 8} < 1/2 and then A> < /¢ < A by iteration
of the result observing that the remaining assertion implies inductively

" ( U Bkirm) < (0 +8Dw, 07 )"

xeX
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whenever i € N, A~it < At. Moreover, in view of Lemma 3.9 and Remark 3.10, only the
case d + t = r needs to be considered.

The remaining assertion will be proved by contradiction. If it were false for somem, n, O €
N,0 <481 <1/2,0<62<1/2,0<s9 < 1,and0 < M < o0, there would exist a sequence
& with g; | 0 asi — oo and sequences X;, T;, di, ri, t; ¢i, i, and 7; with i € N showing
that &; does not satisfy the assertion.

The argument follows the pattern of Lemma 3.11. First, one could assume for some
T eGn+m,n)

=T, ri=1

fori € Nand thennoting#X; < Q that X; C B,’{f’” (0) and hence, possibly passing to a sub-
sequence, the existence of real numbers d, t, T, of ¢ € R of a nonempty, closed subset X
of B;’,;rm (0), see [6, 2.10.21], and of a stationary, integral n varifold uin U := J,.x B, (x),
see Allard [1, 6.4], such that #X < Q, and, asi — oo,

di—d, ti—>t, twt—>71, §—C,

X; — X in Hausdorff distance,

/gadu,- — /(pd,u forp € C?(R”"'m) with spteo C U,
and additionally
Typw =T forpalmostall x € U.
Clearly,

d<Mt, d+t=1, t>0, 2> <71/t <A,
#T(X)=1, ¢eB™ONT,

and one would readily verify

M(U (v € B, +0):IT(y — )| > soly — x|}) < (0 41— 8w,

xeX

M(U Bf(x)) > (Q +8)w,t",

xeX

Moreover, Lemma 3.6 would imply with S, := {z € R"t": T1(z — x) = 0} for x € R*t™

M(UBQ(X))Z(Q—SI)C%Q" for0<g<l. > 6"ux) =0,

xeX xeX

> 0" x) (H' L Sy) (A) < pu(A) forACU.

xeX
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Therefore if x € X, y € sptu, TH(y) ¢ TH(X),0 < |[Tt(y —x)| = h < ¢, then one
would find

{z€8y:IT(z—x) <solz—x|}=S,NB (x+ T (y —x).

(sg2=1)~12h
(= m/oH72 = (552 = D720/ ) wnt”
= (H"C Sy) (B,(x + ) — (H"L Sy) ({z e R"™™:|T(z — x)| < s0lz — x[})
< (H"CSy) ({z € B,(x +0):|T(z — x)| > solz — x[})
< (1 —é8)wnt",

hence h > At, in particular, since At > 7 and #7 (X) = 1,

sptw) 0 | B o) = [ J 8 0 B, (), M(UBT(X)) = Qu, 7"

xeX xeX xeX

contradicting the previously derived lower bound because 7 > 0. O
Proof of (2) On may first assume max{§;, 8} < 1/2, then
A2/2 < dist(€, X)/t < /2

by part (1), and 1 < r/t < M + 1 by Lemma 3.9 and Remark 3.10.

The remaining assertion will be proved by contradiction. If it were false for somem, n, Q €
N,0<d61 <1/2,0 <68 <1/2,0<s50<1,0<s5s < 1,and 0 < M < 00, there would
exist a sequence &; with ¢; |, 0 asi — oo and sequences X;, T;, d;, ri, t; ¢i, (i, and & with
i € N showing that ¢; does not satisfy the assertion.

The argument follows the pattern of part (1). First, one could assume for some 7 €
Gn+m,n)

Ii=T, ri=1

fori € Nand thennoting#X; < Q thatX; C EX,;F”’ (0) and hence, possibly passing to a sub-
sequence, the existence of real numbers d, ¢, of ¢, £ € R*™" of a nonempty, closed subset X
of Bz’f’" (0), see [6, 2.10.21], and of a stationary, integral n varifold in U := | J, .y B, (x),
see Allard [1, 6.4], such that #X < Q, and, asi — o0,

xeX

di—d, ti—>t, ¢—¢ &—E,
X; — X in Hausdorff distance,

/(pdm — /(pd,u for ¢ € CQ(R"”") with sptg C U,
and additionally
Tyw =T for palmostall x € U.

Clearly,

d<Mt, d+t<1, 0<tr<l,
#T(X)=1, ¢eB™O)NT, &esptpu,

and one would readily verity

M(U (v € B, +0): TG — 2| > soly —x|}) < (Q+1—8)wnt".

xeX
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It would hold

0 < dist(&, X)/t < A/2,
IT(E —x)| <sl& —x| forxeX, THE)¢THX),

hence there would exist x € X with |£ — x| < Ar/2 implying 0 < |IT+HE —x)| <t Finally,
one would obtain as in the last paragraph of the proof of part (1) with y replaced by & that

M= |THE =)
which is incompatible with
T | <lg—xI < a2
because At > 0. O

3.13 The following fact from multilinear algebra, see [6, 1.3.1] for the notation, will be
useful. [fm,n € N, and S, T € G(n + m, n), then
L= [IA(TIS)I> <nlT - SII%

in fact, verifying [|A,f — Angll < nllf — gllsup{llfIl.lIgI}"~" whenever f. g
Hom(R"”, R") and n > 1, the assertion follows from

L= [[Audsl, (AT = 1A (TIS)* o (TIHH],
Is —(T|1)*oT|S=1g— (SoT)o(T|S) =(SoTH) o (T 0 9)|S,
s — (TIS)* o (TI)H| < [So THIT+ o S| < |IT - S|1%.
3.14 In studying approximations of integral varifolds the following notation will be conve-

nient. Suppose m,n € N, and T € G(n + m, n). Then there exist orthogonal projections
7 R 5 R o R"™ — R™ suchthat 7 = im7* and 7 o 6* = 0, hence

T=n*on, T*=0"00, lgum=n"onr+0c*oo0.

Whenever a € R"7, 0 < r < 00,0 < h < oo the closed cylinder C(T, a, r, h) is defined
by

C(T,a,r,h)={x e """ |T(x —a)| <rand |T-(x —a)| < h}
={xeR"™:|n(x —a)| <rand|o(x —a)| <h).

This definition extends Allard’s definition in [1, 8.10] where & = oo.

Lemma 3.15 (Approximation by Q valued functions) Suppose m,n, Q € N, 0 < L < oo,
1 <M <oo,and0 < é; <1 forie{l,2,3,4,5}withds < Qy,n)~"/wy.

Then there exists a positive, finite number & with the following property.

Ifa,r, h, T, w, and o are as in 3.14, h > 244r,

U = {x e R"™ :dist(x, C(T, a, r, h)) <2r},
w is an integral n varifold in U with locally bounded first variation,

(Q =14+ 8Dwr" < u(C(T,a,r,h) <(Q+1—28)w,r",
wW(C(T,a,r,h+84r)~C(T,a,r,h —284r)) < (1 — 83)w,r",
wlU) < Mw,r",
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0 < &1 < &, B denotes the set of all x € C(T, a, r, h) with 0™ (i, x) > 0 such that

either ||(S[L||(BQ()C)) > £ ,u(l_?g(x))l_]/” for some 0 < o < 2r,

or / [Tepe — T1du(§) > €1 /L(BQ(X)) for some 0 < o < 2r,
B, (x)

and H denotes the set of all x € C(T, a, r, h) such that

181411 (Bs, (x)) < & pu(By, (x)' =11, / ITep — T1du(E) < & u(By, (x)),
B2r(x)
(B, (x)) = 8swa0" for0 <o <2r,

then there exist an L" measurable subset Y of R" and a function f : Y — Qo (R™) with the
Sfollowing seven properties:

() YC Br ((a)) and f is Lipschitzian with Lip f < L.
(2) Defining A= C(T,a,r,h)~Band A(y) ={x € A:m(x) = y} fory € R", the sets A
and B are Borel sets and there holds

o(ANsptu) C By s, (0(a), sptf(y) Co(A(y)),
IF O =0 (0" (1, YHO L A(p))

whenevery € Y.
(3) Defining the sets

C = B,(m(a)) ~(Y ~n(B)), D=C(T.a,r.h)Nna ' (C),
there holds
L"(C) 4+ n(D) < gy u(B).

with 3y = max{3 4+ 20 + (120 + 6)5",4(Q + 2)/51}.
4) Ifx1 € H, then

lo(x1 —a)l = h —dar

andfory e Y N B, (m(x1)) there exists xp € A(y) with 0™ (u, x2) € N and

Aayr
T — x| = LIT G2 = 00l

where 0 < A4y < 1 depends only on n, 8, and 84. Moreover, A Nspt u C H and

(mr ™ o) (H ﬂn_l(Y)) = grath f.

(5) The set Y ~Y has measure O with respect to £ and (. H).

©) If L"(B,(m(@) ~Y) = (1/Dwn(ayr/6)", 1 < g < 00, P = (6°(IS], ) 0 0)H" is
the Q valued plane associated to S € Qo(R™) via o, and g : Y — R is defined by
g =G(f(y),S) fory €Y, then

| dist(-, spt P)llza (o H)
< (12" 0 (IglliLacer vy + Do) L (B, (w (@) ~ Y)/atl/m)

where I ) is a positive, finite number depending only on n, and

. n:n 1/n
sup(dist(x, spt P) :x € H) < llgllzoe(crey) +2 (€' (B, (x(@) ~ V) /wy)' " .

@ Springer



A Sobolev Poincaré type inequality for integral varifolds 391

(7) For L™ almost all y € Y the following is true:

(a) f is approximately strongly affinely approximable at y.
(b) Whenever x € H withm(x) =y

(r % 0)(Ty ) = Tan (graphy ap Af (). (7. 0 (x)))

where Tan(S, a) denotes the classical tangent cone of S at a in the sense of [6,
3.1.21].

© ITep =TIl < llap Af (W)l for x € H with 7t (x) = y.

@ llap AfMI? < Q1 + (Lip f)*) max{[| Tepe = T|* :x € 2~ ({y}) N H).

Choice of constants One can assume 3L < 44.
Choose 0 < sp < 1 close to 1 such that 2(sy > — 1)'/? < 84, define

A =2A3.12(n, 82, 50) /4,
choose sp < s < 1 close to 1 satisfying
=D <4 QPG -DV <L,
and define ¢ > 0 so small that
e<Qnm)' Q- 1+81/2<(1—ne’)(Q—1+38),
0—1/2<(—ne*)(Q—1/4), 1-ne*>1/2,
and not larger than the minimum of the following eight numbers
&4(m,n, 1 —83/2), ex1i(m,n,1,M,8/2,s),
e2(m,n, Q+1,M,8/2,5), e1(m,n, Q,M, 1/4,5),

&22(m, n, min{d2/3, 83/2, 85}, s, max{M,2}), ex11(m,n, Q, M, 8/3,s),
e12(m,n, Q,85,8,s,5, M), er120m,n, Q,1,8,s,s0, M).

Clearly, ¢ satisfies the same inequalities as ¢ and one can assume ¢ = 0,andr = 1. O

Proof of (1) and (2) Since 6*" (i, -) is a Borel function, one may verify that A and B are
Borel sets (cp. [6, 2.9.14]).
First, the following basic properties of A are proved: For x € A Nspt

07 (1. x) = 83/2.
(£ e " (BIO):ITE —x)| > sl& — x|} C o™ Bpinja.6 (@ X)),
o(ANsptp) C By, (0).

The first is implied by Lemma 3.4. The second is a consequence of the fact that for § €
7~ (B} (0)) with [T (§ —x)| > s[§ — x|

lo(€) —o@)| < (72 = D27 @) — m(0)] <2572 — D2 < min{r/2, 84}
To prove the third, note that Lemma 3.11 applied with

0,8,X,d,r,t,and f replaced by
1,83/2. {x}, 1,2, 1, and T~ | {x}

yields
(= (B (0) N~ (Bs, (0(x)))) = (1 — 83/2)n,
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so that h — 84 < |o(x)| < h would be incompatible with
w(C(T,0,1,h+384) ~C(T,0,1,h —2384)) < (1 — 83)wn.
Next, the following assertion will be shown:

If X C ANsptu, 0" (u,x) € Ny forx € X, and s~V T (xa — x1)| < |x2 — x1| whenever

x1,x2 € X, then > 0" (u, x) < Q.
xeX

Using the basic properties of A to verify
{£ € BT (x): T —x)| > sl& — x|} c 7 (B} (0)) No ™! (B, (0(x)))
Cc C(T,0,1,h)
there holds

M(U (& € BT () :|TE — )| > sl —x|}) < u(C(T.0.1, h))

xeX

<(@+1—-68)wy
and Lemma 3.11 applied with
0,68,d,r,t,and f replaced by
0+1,8/2,1,2,1,and T+ X
yields

20" (1, x) < Q+82/2,

xeX

hence > . 0"(1,x) < Q and tl}e assertion is proved. It implies, in particular,
erA(y) 0" (u, x) < Q whenever y € B}'(0) and 6" (1, x) € Ny for each x € A(y).

Let Y be the setof all y € Bf (0) such that

> 0" (u,x)=Q and 0" (u,x) € Ny forx € A(y),
x€A(y)

Z be the setof all z € B{’ (0) such that

> 0M(u,x) < Q—1 and 6"(u,x) € Ny forx € A(z),
x€A(2)

and N = B{' 0)~(Y U Z). Clearly, Y N Z = (. Note by the concluding remark of the
preceding paragraph £*(N) = 0 because 0" (u, x) € No for H" almost all x € U. Since
6" (e, -) is a Borel function whose domain is a Borel set and A is a Borel set, Y and Z are
L" measurable by [6,3.2.22(3)]. Let f : Y — Qo (R™) be defined by

FO)=oxl > 6"(u,x)[x] ] whenevery €Y.
X€A(y)
One infers from the assertion of the preceding paragraph and 2.14

G(f (), f1) < QY272 = D2y — yi| foryi, y €Y.

(1) and (2) are now evident. m]
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Proof of (3) For the estimate some preparations are needed. Let v denote the Radon measure
defined by the requirement

v(X) = /J“T du  for every Borel subset X of U
X

where J# denotes the Jacobian with respect w. Note by [6, 2.9.8]

[Ty — T| <& for walmostall x € A,
hence 1 — JUT (x) <1 — (JHT)(x)? < ne? by 3.13. Therefore

(1—ne)puL A <vLA.
This implies the coarea estimate
(1 —ne?)u (C(T,0,1,h) N~ (W))
<u(BNa~' (W) + QL Y NW)+(Q - DL(ZNW)

for every subset W of R”; in fact the estimate holds true for every Borel set by [6, 3.2.22 (3)]
and 7 (0. B) is a Radon measure by [6, 2.2.17]. Also note that in view of the choice of I'(3)
one can assume

p(B) = (81/4)wn,
which implies £"(Y) > 0 because it follows from the coarea estimate applied with W =
B} (0)
(Q = 1481/2)w, < (1 —ne*)u(C(T,0, 1, h))
< w(B)+ QLY (Y) +(Q - HL"(Z)
< @G1/Hon +(Q — 1+ 81 /Dy + L(Y) — (61/HL(2),

hence £ (Z) < (4/81)L"(Y).
In order to derive an upper bound for the £" measure of Z, the following assertion will
be proved.

Ifz € Z with 0" (L" LR" ~Z,z) = 0, then there exist { € R" and 0 <t < oo with
z € B,(¢) C BI(0) and L"(B,(§)) < 6-5" u (BN 7x~1(B,(0))).

Since £"(Y) > 0, some element E,({) of the family of balls
{By((1-6)2):0 <6 <1}
will satisfy
z€B,(5) C B{(0), 0<L"(YNB,&)=(1/)L"ZNB©)).

Hence there exists y € ¥ N B,(¢). Noting for & € A(y) with 0"(u, &) > 0, and k € R+
with |E + 7% —y) — k| < t,

t<1, n) =y,
7)) — ¢l = mE+7*C —y) =) < |E+7* ¢ —y) —«| <1,
B,(£ +7*(¢ —y) C N (B,(©)),

and, recalling the basic properties of A,

fic € B(E+ 7" — ) :IT(c — &) > slc — £} € C(T,0,1, 1) N~ (B, (),
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one can apply Lemma 3.11 with

8, X,d, r,and f replaced by
1/4,{& € A(y):6" (., &) > 0}, 1,2, and
N-ms—y.11{§ € A(y):0"(u, &) > 0}

to obtain
(Q — 1/&wnt" < (C(T,0, 1, )N~ (B,(2))).
The coarea estimate with W = l_il (¢) now implies

(Q — 1/2)w,t"
< w(BNna~'(B,() + QL (Y N B, () + (Q — DL (Z N B,(£))
= pu (BN 1B, () + (Q — 1/)w,t"
+ (1/2)L"(Y N B,(¢)) — (1/2)L"(Z N B,(©)),

hence
(2/3)L"(B,(¢)) < L(ZNB,(¢)) <4 (B m1_1(1-‘_3,(4“)))

and the assertion follows.
L" almost all z € Z satisfy the assumptions of the assertion of the preceding paragraph
(cf. [6, 2.9.11]) and Vitali’s covering theorem (cf. [6, 2.8.5]) implies

LNZ) <6-5" u(B).

Clearly,

L"(7(B)) < H"(B) < (B).
Since C ~ N C Z U (B), it follows

LM(C) < (146-5") u(B).
Finally, applying the coarea estimate with W = C yields

(1 —ne?) u(D) < w(B) + QL"(C) < (1 + Q + 60 - 5") u(B).
]

Proof of (4) Assuming now that x| and y satisfy the conditions of (4), it will be shown that
one can take A4y = A. Verifying

g ex BYO):TE —x1)| > s1E = x1]} C 0™ Brina /2.6 (0 x1)),
defining 8¢ = min{§,/3, 63/2} and applying Lemma 3.2 with

8, M,a,r,d,t,and ¢ replaced by
min{ds, 8¢}, max{M, 2}, x1,2, 1, 1, and —T (x;)

yields the lower bound

i (77 BLO) N 0™ Binga 2.5 @ 1)) = (1= Se)ao,

@ Springer



A Sobolev Poincaré type inequality for integral varifolds 395

so that h — 84 < |o(x1)| < h would be incompatible with
w(C(T,0,1,h+684)~C(T,0,1,h —284)) < (1 —83)y

and the first part of (4) follows.
To prove the second part, one defines X = {§ € A(y):60"(u, &) € N} and first observes
that Lemma 3.11 applied with

8,d,r,t,and f replaced by,
82/3,1,2, 1, and 1y, 11X

yields

M(U {8 € Bix =7 ()T (€ — )| > sl€ —XI}) = (Q —82/3) wp.

xeX

On the other hand
w(C(T,0,1,h)) <(Q+1—38)w,.

Therefore, using the basic properties of A and the lower bound derived in the previous
paragraph, for some x € X

C(T,0,1,h) No ™" (B p(0(x1)) No~ (B, (0 (x))) # 0,
hence |o(x; — x)| < A and
dist(xy, X) < [mw(x; —x)| + |o(x; — x)| <21 = A3.12(n, 82, 50)/2 < 1.

Now, the point x, € X may be constructed by applying Lemma 3.12 (2) with

81, A, d, r,t, ¢, and & replaced by

85, A3.12(n, 82, 50), 1,2, 1, —*(¥), and x|
noting

{§ € Bi(x =" () :IT (¢ —x)| > s0l§ —x[} C C(T,0,1,h)

forx € X.

Since ¢1 < & < (2y,) ! and 85w, < (2y,n)~", the inclusion A N sptu C H follows
from [11,2.5]. Clearly, (7 x o)(ANspt Nz~ 1(Y)) = graph, f by (2). Taking y = 7 (x1),
one obtains H N7~ 1(Y) c AN spt i, hence (7 x o)(H N L) = graph, f by the
preceding inclusion. O
Proof of (5) Recalling (v A)/2 < v Aand £"(N) = 0, it is enough to prove

YCNUY, 7'Y)NH CANsptu

in view of the coarea formula [6;3'2'22 3)].
Suppose for this purpose y € Y. Since f is Lipschitzian, there existsaunique S € Q o (R™)
such that

(y, S) € graph f.

Note {y} x sptS = ({y} x R") N graph,, f and define R = n_l({y}) N o_l(spt S). Since
A N spt p is closed (cp. [6, 2.9.14]),

RCANsptu
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and (4) implies H N A ({y}) C R, the second inclusion follows.
Choose a sequence y; € Y with y; — y asi — oo and abbreviate

X;=1{& € A(y):0"(u, &) eN} fori e N.
Now, Lemma 3.11 applied with

8, X,d, r,and f replaced by
1/4, X;, 0, 2, and]lXi

yields fori e N

w| U B /x| = (Q—1/9w,t" whenever0 <t < 2.

xeX;

Since spt f(y;) — spt S in Hausdorff distance as i — oo the same estimate holds with X;
replaced by R and

0—1/4< 1imsupM <> 6" (. x)

wyt"
t|0 n YeR

implies y ¢ Z, hence the first inclusion. O
Proofof (6) Lety := pu H. Using (Y)Y <2(m@w(we H))LY <2QL" Y and
(x e HNa ' (Y):dist(x,spt P) >y} CHNn 'y e Y:g(») > ¥}
for 0 < y < oo by (4), one infers
I dist(-, spt P)llLa(u Hom-1(vy) < 2Ql8llLaccr L y)- 9]

Hence only || dist(-, spt P) ”Lq(ﬂ L H ~x~1(v)) heeds to be estimated in the first part of (6).
Since A = A(4), whenever z € E{‘ (0) ~ Y there exist ¢ € R” and 0 < t < A/6 such that

z€ B,(¢) C B{(0), L'(B,()NY)=L"(B,()~Y)
as may be verified by consideration of the family of closed balls
{By((1 —0)2):0 <6 < 1/6).

Therefore [6, 2.8.5] yields a countable set / and §; e R",0 <t; <A/6andy; € Y N ét,- &)
for each i € I such that

B, (&) C BI(0), L"(B,(&)NY)=L"(B (&)~Y),
B, (&) N B,]_ (¢j) =¥ wheneveri, j € I withi # j,
B{(0)~Y c | JE: C B} (0)

iel
where E; = B, (¢) N B} (0) fori € I. Let
hi :=G(f(y),8), Xi:={§ € A(y)):0"(n.§) €N}

foriel,J:={iel:h; >18t},and K :=1~J.
In view of (5) there holds

||d||Lq(l,¢\_H~7r71(y)) = ||d||Lq(1//|_n*1(Uj€J E})) + ||d||L4(¢|_n*1(Ui€K E)) (H)
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for every v measurable function d : R**" — [0, oo[. In order to estimate the terms on the
right hand side for d = dist(-, spt P), two observations will be useful:

() Ifielandxy € HN 7~ Y(E;}), then dist(xy, spt P) < 6t; + h;.
(i1) There holds (n_l(Ei)) < (Q + Dw, (12t;)" wheneveri € I.

Suppose for the proof of the observations that i € I and x; € H N 7~ '(E;). Noting
[T (x1) — yi| <6t; <A, (4)yields a point x, € X; and

|72 = 30| = LIT G = x)l = L) = il < 61,
implying
dist(x1, spt P) < ‘Ti(xz - x1)’ + dist(xa, spt P) < 61 + hi,
hence (i). Moreover,
2 = 1] = TG = el + [T (2 = x| =126, x1 € By, (v2),

hence

Hna '(E) C | By, ).

xeX;
Therefore noting
{y € Bi&x =) :IT(y = x)| > soly — x|} € C(T,0,1,h)
for x € X; by (2) and the choice sg, Lemma 3.12 (1) applied with
81,8, A, X,d, r,t,¢,and t replaced by
1,0, A3.12(n, 82, 50), Xi, 1,2, 1, = *(y;), and 12¢;

yields (ii) and the observations are proved.
Now, the first term will be estimated. Note, if j € J, then by the first observation (i)

dist(x, spt P) < (4/3)h; whenever x € H N rr_l(Ej),
(4/3)h; <2G(f(y),S) whenevery e Y N B,j <),
because
G, 8 =G(f(yj).S)—Lly—yjl =hj—2Lt; > (2/3)h;.

Using this fact and the preceding observations (i) and (ii), one estimates with J(y) := {j €
J:(4/3)hj > y}for0 <y < o0

T Ea UEf N{x e R"™ :dist(x,spt P) >y} | < > 1//(71’1(Ej))
jeJ JjeJ(y)

< X @+ Don(2)" <@+ 2" (| B, @)

JjeJ(y) jel ()

<2 +na2c | |J B,gpny
Jel )
<20+ DAY Ly € Y:G(F (1), S) > ¥/2}),
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hence

IdistC spt Pl oy nmt(y,, £, < R(Q + DADM2lglLaer vy (D

jeJ
To estimate the second term, one notes, ifi € K,x € HN 7~} (E;), then
dist(x, spt P) < 24¢;.

Therefore one estimates with K(y) :={i € K:24t; > y}for0 <y <ocandu : R - R
defined by u =3¢/ 26 X3 ()

w(nl(UEi)ﬂ{x € R"™ . dist(x, spt P) > y})§ > v (rNE))

iekK ieK(y)

< X @+ w2y <@+ bav'c [ | B, @)

i€k i€k ()
<(Q+DHU2)"L" ({y e R":u(y) > y/(12)}),
hence
I distC Spt Pl Loy ot Uy £y < (@ + DA ull oo a)
Combining these two estimates, i.e. (III) and (IV), with
c (UB,,. (m) <2L"(B} ()~ 1),
iel
B 1+q/n
/ ul? dL" = 3 C) w0 (1) < 290y, " (zﬁ”w,[ (a»))) :
iel iel
el ageny < 23wy " L7 (BY (0) ~ ¥) T,

and recalling (I) and (II), one obtains the first part of the conclusion of (6).
To prove the second part, suppose x; € H. Since

m(x1) € By((1 — 0)m(x1)) C BY(0), L*(By((1 —O)mw(x1)NY) >0
for (C”(E?(O) ~ Y)/a),,)l/" < 6 < 1, there exists forany § > Oay € Y with

G, S) = lglrecr vy,

(1) — yl < 2 (LB} O)~Y)/w,)""

+87

in particular |7 (x1) — y| < A for small §. Therefore (4) may be applied to construct a point
xp € A(y) with 6" (u, x2) € N and

T+ (x, — xl)] < LIT(x2 —x1)| < |m(xp) — yl.

Finally,
dist(xq, spt P) < dist(xo, spt P) + ‘Tl(xz — xl)‘
= 1
<G S) +2(L"(BLO) ~ V) /en) " + 8
and § can be chosen arbitrarily small. O
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Proof of (7) Part (7a) follows from (1) and Theorem 2.5. Part (7b) follows from (1), (4)
and Theorem 2.5. Parts (7c) and (7d) are consequences of (7b) in conjunction with Allard
[1, 8.9(5)], noting concerning (7d) that ||Dg;(0)|| < |lap Af(x)|| < Lip f whenever g; :
R" — R™ are affine functions such that ap Af (x)(v) = Z,Q=1 [g; (v)] for v € R"™™ by
Almgren [2, 1.1 (9)—(11)]. O

Remark 3.16 The p measure of B occuring in (3) can either be estimated by a direct cover-
ing argument, as will be done in Corollary 4.8, or, in order to obtain a slightly more precise
estimate, by use of [11, 2.9, 2.10], as will be done in Theorem 4.11.

4 A Sobolev Poincaré type inequality for integral varifolds

In this section the two main theorems, Theorems 4.4 and 4.11, are proved, the first being
a Sobolev Poincaré type inequality at some fixed scale r but involving of necessity mean
curvature, the second considering the limit as r tends to 0. For this purpose the distance of
an integral n varifold from a Q valued plane is introduced. One cannot use ordinary planes
in Theorem 4.4 (without additional assumptions) as may be seen from the fact that any Q
valued plane is stationary with vanishing tilt. In 4.11-4.13 an answer to the Problem posed
in the introduction is provided.

Definition 4.1 Suppose m,n,Q e N, 1 < g < o00,a e R"™ 0 <r < 00,0 < h <
oo, T € G(n+m,n), Pisa Q valued plane parallel to T (see Definition 2.13), i is an
integral n_varifold in an open superset of C(T, a, r, h), A is the H" measurable set of all
x € T N B,(T(a)) such that for some R(x), S(x) € QQ(R"+m)
IR = 6"(PLC(T, a,r,h), YH L T~ ({x}),
ISC = 6" (e C(T.a.r by, YHO L T ({x})
and g : A — Ris the 1" measurable function defined by g(x) = G(R(x), S(x)) forx € A.!
Then the g tilt of v with respect to T in C(T, a, r, h) is defined by
Ty(woa,rh, T) = r Ty — TllLaue C(Tarh))-
The g height of ju with respectto P in C(T, a, r, h), denoted by H,(u, a, r, h, P), is defined
to be the sum of
rm T4 dist (-, spt P\l Lagu e o Taurhy)
and the infimum of the numbers

T g g pen L yy A+ T IR (T N BL(T (@) ~ Y) VAT

corresponding to all 1" measurable subsets Y of A. Moreover, the g height of p in
C(T,a,r, h), denoted by H,(u, a,r,h, Q,T), is defined to be the infimum of all numbers
Hy(u,a,r, h, P) corresponding to all Q valued planes P parallel to 7.

Remark 4.2 T,(u, a,r, h, T) generalises tiltex,, in an obvious way.

Hy(w, a,r, h, P) measures the distance of  in C(T, a, r, h) from the Q valued plane
P. To obtain a reasonable definition of distance, neither the first nor the second summand
would be sufficient. The first summand is 0 if © = P L B for some " measurable set B. The

I The asserted measurabilities may be shown by use of the coarea formula (cf. [6, 3.2.22 (3)]).

@ Springer



400 U. Menne

second summand is 0 if © = P + H" L B for some " measurable subset B of C(T, a, r, h)
with H"(B) < oo and H"(T(B)) = 0. From a more technical point of view, the second
summand is added because it is useful in the iteration procedure occurring in Theorem 4.11
where the distance of Q valued planes corresponding to different radii r has to be estimated.
The choice of the exponent 1/¢ + 1/n instead of 1/g for H" (T N Br (T (a)) ~Y) is motivated
by Lemma 3.15(6).

Remark 4.3 One readily checks that H, (i, a, r, h, P) = 0 implies
uoC(T,a,r,h) =PL.C(T,a,r, h)

and H; (i, a,r,h, Q,T) = 0, h < oo implies Hy (i, a,r, h, P) = 0 for some Q valued
plane P parallel to T'.

More generally, the infima occurring in the definitions of H,(u,a,r, h, P) and
Hy(j,a,r, h, Q,T) are attained. However, this latter fact will neither be used nor proved in
this work.

Theorem 4.4 Suppose m,n, Q e N, 1 <M < o0,and0 <6 < 1.
Then there exists a positive, finite number ¢ with the following property.
Ifa e R 0 <r <00,0<h<ooTeGn+m,n),dr < h, uis an integral
n varifold in an open superset of C(T, a, 3r, h + 2r) with locally bounded first variation
satisfying
(Q = 1+ &wpr" < u(C(T,a,r,h) <(Q+1—3war",
w(C(T,a,r,h+38r)~C(T,a,r,h —5r)) < —8w,r",
u(C(T,a,3r,h+2r)) < Mw,r",
I814l(C(T,a,3r,h+2r)) < er"™', Ti(u,a,3r,h+2r,T) <e,
G is the set of all x € C(T, a, r, h) N spt u such that
I811(By(x)) < @ya) ™" w(B,(x)' ™" whenever 0 < ¢ < 2r,

and A is the set defined as G with ¢ replacing (2y,)~"', then the following two statements
hold:

() Ifl <qg<n,qg"=nq/(n—q), then
Hq*(MLG,a,r, h? Q» T)
< Tay (T, a,3r,h+2r, T) + (r " w(C(T, a, r, h) ~ A)'/9)

where I'(1y is a positive, finite number depending only onm, n, Q, M, §, and q.
(2) Ifn < q < oo, then

HOO(MLGv a,r,h, Q7 T)
<To) (T,(m.a,3r,h +2r, T) + (r "w(C(T, a, r, h) ~ A) /1) .

where I (2) is a positive, finite number depending only on m, n, Q, M, 8, and q.
Proof Define

Lo :=To120m, Q), T'i:=T3153(0Q,n,8/2), L:=1,
g0 :=¢e315(m,n, 0,1, M,8/2,8/2,8/2,8/2, Qyun)"/wy), €1 := &o,
A= 243154 (n,8/2,8/2)
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and choose 0 < & < gg such that
e <eolnya)' ™", 3"e < eo(nyn) ",
CyN(n+m)3e/eg < (1/2)w1(A/6) ifn=1,
Ty N+ m) (3"8/80 + (s/so)”“"*”) < (1/2)w,(1/6)" ifn > 1.

Assume a = 0 and r = 1. Choose orthogonal projections 7 : R**" — R* o : R —
R™ with w o 0™ = 0 and im7* = T. Applying Lemma 3.15, one obtains sets ¥, B, and H
and a Lipschitzian function f : ¥ — Q¢ (R™) with the properties listed there. Using Lemma
3.15 (1)(2) and Theorem 2.12 and noting the existence of a retraction of R to B;"(0) with
Lipschitz constant 1 (cf. [6, 4.1.16]), one constructs an extension g : B’f 0) = Qo[@R™) of

f with Lip g < I'g and spt g(x) C B}"(0) for x € B} (0).
Next, it will be verified that G C H; in fact for x € G using [11, 2.5] yields

1(By(x)) = Qyan)™"" for0 <o <2,
181l (By(x)) < I81II(C(T, 0,3, h +2)) <& < 5o u(By(x)' /",
/ [Tepw — T1dp(§) < / [Tep — T|du() < 3" < g0 (B (x)).
By (x) C(T,0,3,h+2)
In order to be able to apply Lemma 3.15 (6), it will be shown
L (B} (0)~Y) = (1/2)wn(1/6)".
Let By be the set of all x € B such that
I1811(B,(x)) > &0 (B, (x))' /" forsome 0 < ¢ < 2,
and let B; be the set of all x € B such that

/ |Tepe — T1du(§) > eo /,L(BQ(X)) for some 0 < o < 2.
Bg(x)
Clearly, Besicovitch’s covering theorem implies
1(By) < N(n+m)(e0)”'3"T1(1, 0,3, h +2,T) < N(n +m)3"e/e.
Moreover, By = ¢ if n = 1, and Besicovitch’s covering theorem implies in case n > 1
(B1) < N +m)(eo)"/ = [Sull(C(T, 0,3, h + 2"/~
< N(n+m)(e/e0)" V.

Therefore the desired estimate is implied by Lemma 3.15 (3) and the choice of ¢.
To prove part (1),let 1 < g < n, ¢* =nq/(n — q), define

Ty =14 (12" @ max{1, T3,15 (M}, T3 =2T21001)0m,n, Q, ),
Ty =N +m)'/e) '3, Ts5s=2"20m'? Ts=Tom'?Q"?
choose S € Qo (R™) such that (see Definition 2.9)
hq(g.8) <T314(8), sptS C B} (0)
with the help of Theorem 2.10(1) noting again [6, 4.1.16] and denote by
P:=@"(IS], ) o o)H"
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the Q valued plane associated to S via 0. The estimate for Hy«(u . G, 0, 1, h, P) is obtained
by combining the following six inequalities:

Hys(ue G,0,1,h, P) < T (hgr (g, S) + L (B} (0) ~ Y)'/1)
hq(g,8) < T3t4(g),
LB O~ < "By,
w(BN AT < Ty T,(1,0,3,h+2,T),
14(8lY) =TsTy(u,0,1,h,T),
14(g| B} (0) ~Y) < Ts L" (B} (0) ~ ¥)'/4.
The first is implied by Lemma 3.15 (2) (4) (6) and spt S C E;l” (0), the second is implied by
the choice of §, the third is implied by Lemma 3.15 (3), the sixth is elementary (cf. Almgren

[2, 1.1(9)—(11)]). To prove the fourth, note that for every x € B N A there exists 0 < o < 2
such that

g0 (B, (x)) < /ITsM—TId/L(S),
By(x)

hence by Holder’s inequality

(e0)? (B, (x)) < / Tep — T du(®)
By(x)
and Besicovitch’s covering theorem implies the inequality in question. Observing that

yeY:lapAgy)| > yl~m ({E€ GNa ' (¥):|Tep — T > y/Ts))
has £" measure 0 by Lemma 3.15 (7d) and Almgren [2, 1.1(9)—(11)], the fifth inequality is
a consequence of
L"({y € Y:[ap Ag(»)] >y}
<H'({§ € GNa ' (V):|Ten —T| > y/Ts))
<u{EeGna ') |Tew —T| > y/Ts)).
The proof of part (2) exactly parallels the proof of part (1) with co and Theorem 2.10(2)
replacing ¢* and Theorem 2.10(1). O

Remark 4.5 The p measure of C(T, a, r, h) ~ A could be estimated using Besicovitch’s cov-
ering theorem as follows: If u satisfies (Hp) with 1 < p < n, ¢ = |dull if p = 1 and
¥ = |Hy|Ppif p > 1, then
u(C(T,a,r,h)~A)
<N@n+ m)a_"p/(”_p)W(C(T, a,3r,h+ 2r))"/(”_P) if p<n,
C(T,a,r,h)N(sptu)~A =@ if p=nand ¥ (C(T,a,3r,h+2r)) <é&";
in fact if x € C(T, a, r, h) N (spt u) ~ A the definition of A implies for some 0 < o < 2r
by Holder’s inequality
ep(By () ™" < (B, P (B, (x)' TP, p <,
1(By(x)) < & "P/=Pyr (B, (x))/ P
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Clearly, A and & can be replaced by G and 2y,,) "'
However, this estimate would not be sufficient to prove Theorem 4.11 in the limiting case.

Remark 4.6 The term . G cannot be replaced by w neither in part (1) nor, if n > 1, in part
(2) because otherwise the respective part of Theorem 4.11 would hold with the condition
aqr < np/(n— p)replacedby ag; < np/(n— p)inpart (1) and p = n replacedby p > n/2
in part (2) which is not the case by [11, 1.2], see Remark 4.13.

On the other hand one readily infers from the definition of the ¢* height that

Hy«(w,a,r,h, Q,T)

< Hy(ue Goarih, O, T) + Qh/r + ") ™" w(C (T, a,r.h) ~ G)V".
Remark 4.7 Part (2) can be sharpened using Lorentz spaces to
[_IOO(IJ“L Gv a,r, hv Qv T)
< T (Toi(w,a,3r h+2r,T) + (" w(C(T, a, r, h) ~ A) /")
with a positive, finite number I" depending only on m, n, Q, M, and &, see Stein [18, p. 385].
Here T}, ; is the obvious generalisation of 7; to Lorenz spaces.

A similar improvement is possible for part (1) using embeddings obtainable from [7,
Lemma 7.14] and estimates for convolutions (cf. O’Neil [12]).

The proofs of the preceding theorem and of Lemma 3.15 (6) have been carefully chosen
to facilitate the extension to Lorentz spaces. The only significant difference is the estimate
of the auxiliary function u occuring in the proof of Lemma 3.15 (6) which has to be replaced
by llull s ony < FL”(U{B,[ &) :ieIDSforl <s < n,s* =sn/(n—s) and some
positive, finite number I depending only on s and n. Assuming / finite and {lei (xi):i el}
to be disjointed, u /2 is dominated by the Lipschitzian function with compact support mapping

x € R" onto ) ;; max{0, ; — dist(x, Et,- (xi))} to which the above mentioned embedding
results can be applied to yield the estimate in question.

Corollary 4.8 Supposem,n, Q e N,1 <M <00,0<8§<1L,aeR"™ 0<r <oo T €
G(n+m,n), 1 < p <n, uisan integral n varifold in an open superset of C(T, a, 3r, 3r)
satisfying (H),) and

v=lsull ifp=1, ¥ =IHlu ifp>1,
(Q =14 8w,r" < w(C(T a,r.r) <(Q+1—8w,r",
w(C(T,a,r,(1+8)r)~C(T,a,r,(1=258)r)) < (1 —8w,r",
u(C(T,a,3r,3r)) < Mw,r".
Then the following two statements hold:
(D) If p <n, 1 <q <n, then
Hang (n,a,r,r, Q,T)
n—q
= Ty (T @303, T) + (P79 (C (T, @, 3r,3r0) 707 )

where I'(1y is a positive, finite number depending only onm, n, Q, M, 8, p, and q.
2) If p=nandy(C(T,a,3r,3r)) < eo) where &) is a positive, finite number depending
only onm, n, Q, M, and 8, then

(@) Hnq (u,a,r,r, Q,T) <Ta Ty, a,3r,3r, T) whenever 1 < g < n,
n—q
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(b) Hoo(u,a,r,r, @, T) < Up) Ty(u, a,3r,3r, T) whenevern < g < 00
where I 2a), ' (2v) are positive, finite numbers depending only on m, n, Q, M, 8, and q.

Proof To prove part (1), assume a = 0, r = 1, define ¢* = nq/(n — q), and suppose that
& = e44(m,n, Q, M, §). One only needs to consider the case that the right hand side is
sufficiently small such that, using Holder’s inequality,

I8ull(C(T, a,3,3)) <er" ', Ti(w,a,3,3,T)<e,
since
Hy«(12,0,1,1, 0. T) < u(C(T,0, 1, INV4" + w1 < M7 )T 4 wp/4.

The conclusion then follows from Theorem 4.4 (1) in conjunction with Remarks 4.5 and 4.6.
Part (2) is proved similarly using Theorem 4.4 (2). O

Remark 4.9 In case p additionally satisfies
p(x € C(T,a,r,r):0" (1, x) = Q}) = Swar",

there exists z € T such that for P := QH" L{x € R"™" : T+ (x) =z}
Hong (u,a,r,r, P) <T (Tq (1, a,3r,3r, T) + (rP "y (C(T, a, 3r, 3r)))7qzl:qp))
n—q

provided p < n, 1 < g < n where I' is a positive, finite number depending only on m, n, Q,
M,38, p,and q.

In fact from Lemma 3.15 (2) (3) and the coarea formula [6, 3.2.22 (3)] one obtains for the
set Yo of all y € T N B, (T (a)) such that for some xo € C(T, a, r,r) with T (xg) =y

0"(1,x0) = Q,  0"(n,x) =0 forx e T~ ({y}) NC(T,a,rr)~{xo})
the estimate
£ (Yy) > 28/3)w,r"

provided the right hand side of the inequality in question is suitably small (depending only
onm,n, Q, M, 8, p,and q), hence for any Q valued plane P’ parallel to 7 such that

(2H g (@, a,r,r, P')? < (8/3)wy,
n—q
there holds

diam T (spt P’)
8 3 . l/q—l/n
((8/3)wn) —

and suitable z and T" are readily constructed.
A similar remark holds for the second part.

<2Hn (u,a,r,r, P')
n—q

Example 4.10 Supposem =1,n=2,0=1,a=0,§ = 1/4,

T ={(x1,x2,x3) € R :x3 = 1/2},

N = {(xl, X2, X3) € R3:coshx3 = (xf +x§)1/2},
w = H?>_(T UN) and r slightly larger than 1. It is a classical fact that the catenoid N is
stationary, i.e. 8(7—{2 L N) = 0, hence §;¢ = 0. Therefore, considering the limit » | 1, one
notes that 7, (u, a, 3r, 3r, T) cannot be replaced by T,(u, a, r,r, T) in the conclusion of

Corollary 4.8. It is not known to the author if such kind of behaviour can be excluded by
introducing a smallness assumption on 7, (u, a, 3r, 3r, T).
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Theorem 4.11 Supposem,n, Q € N,0 <« < 1,1 < p <n, U is an open subset of R"*™,
and p is an integral n varifold in U satisfying (Hp).
Then the following two statements hold:

n—qy’« n—p

W Ifp<nl<q <nl<gqg<mn(2 1. 2

0" (u, a) = Q there holds

}, then for n almost all a € U with

lim sup e/ | dist(- — a, T |l Le2 (1 B, (@)
rl0

< Ty lim sup r =9 T, — Tyl Lo (1L B, (@)
rl0

where T'(1y is a positive, finite number depending only on m, n, Q, q1, and q.
) If p=n,n < q < o0, then for i almost all a € U with 6" (i, a) = Q there holds

limsupr =1 dist(- — a, Tap) | L . B, (@)
rl0

< T limsupr=* 4| T, — Tupll e B,
rl0

where I'(3) is a positive, finite number depending only on m, n, Q, and q.

Proo]f Fora € R"™™ 0 < r < oo such that B,.(a) C U denote by G,(a) the set of all
X € Bs,(a) N spt u satisfying
1811 (B, () < Q2yn) ™' 1(By(x))'~1/" whenever 0 < ¢ < 2r.

To prove (1), one may assume first that g > n/(n — 1) possibly replacing ¢, by a larger

number since min{%, L. %} > -2, and thus also that g2 = nqy/(n — g1) possibly

replacing ¢ by a smaller number. Define M = 6" Q0,8 =1/2,9 = q1, 9™ = q2,
e = minfesa(m,n, Q, M, 8), y,)~"}, T1 = Caaqy(m,n, Q, M,8,q).
Denote by C; fori € N the set of all x € spt  such that Bl/l-(x) C U and
||8;L||(Bg(x)) < su(ég(x))l_l/" whenever 0 < o < 1/i.
The conclusion will be shown for a € dmn T}, such that

0"(w,a)=Q, 6" '(Ispll,a) =0,
lri?(} r’”z/("”’)u(ér(x) ~C;)=0 forsomei € N.

Note that according to [6, 2.9.5] and [11, 2.9, 2.10] with s replaced by n this is true for
almost all @ € U with " (u, a) = Q, fix such a, i, and abbreviate T := T, u.
For a there holds

. u(C(T,a,rr)
m===r

1 =0,

r1¢0 w1 0
. w(C(T,a,r,3r/2)~C(T,a,rr/2)
lim =0
rl0 wpr"

and one can assume for some 0 < y < 00

limsupr *T,(n,a,r,r,T) < y.
rl0
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Noting ¢ < ¢* < é . n"fp, one chooses 0 < s < min{(2i)~!, dist(a, R"t" ~U)/7} so

small that for0 < o < s
(0 —1/2)wn0" < u(C(T,a,0,0)) < (Q+1/2)wn0".
w(C(T,a,0,30/2)~C(T,a,0,0/2) < (1/2)w,0",
1(C(T. a,30,30)) < n(Bs,(a)) < w,6" Q0"
I18141(C(T, a,30,30)) <e0"', Ti(u,a,30.30.7T) <e,
T,(w.a,30.30.T) + (@ "i(C(T,a,0.0) ~ C:)'/4 < 4yo%;

in particular Theorem 4.4 (1) can be applied to any such ¢ with r, h replaced by g, 0. Also
note that G,(a) N C(T, a, o, @) equals the set G defined in Theorem 4.4 with r, h replaced
by 0, 0 for 0 < ¢ < 5. For each 0 < ¢ < s use Remark 4.3 to choose a Q valued plane P,
parallel to T such that

Hy (e Gyla),a, 0,0, Pp) <2Hy«(uL Gy(a),a,0,0,Q,T),

denote by A, the H" measurable set of all x € T N BQ(T(a)) such that for some
Ry(x), So(x) € Qo(R™™)

IRo ()l = 6" (P C(T.a,0.0), ) HO L T~ ({)),
IS0 ()l = 6" (1 Go(@) N C(T,a.0.0). Y H L T~ ({a}),
and by g, : Ay — R the H" measurable functions defined by
8o(x) = G(Ry(x), Sp(x)) forx € A,.
By Remark 4.3 there exist H" measurable subset ¥, of A, such that
2Hg+ (e Go(a), a, 0,0, Po) = 0 "1 dist(, spt Po)l 1o* (. G, @nC(T.t000)
107 gl ey, + €T 0 By(T(@) ~ ¥p) .
Possibly replacing s by a smaller number, one may assume for 0 < ¢ < s that
(Hg (- Gy(a), a, 0. 0. Pp))?! < 27" 2w,
by Theorem 4.4 (1) and also that
W(C(T,a,0,0)~Ci) <27 2wy0”.

Noting C; N C(T, a, 0/2,0) C Gy(a) N Gy 2(a), one obtains directly from the additional
assumptions on s that

H(T N B,(T(a)) ~Y,) <27" w0,
H'(T N By (T (@)~ Vo) < 27" *wno",
H ({x € Yop N Y5 :85(x) # Sp2(0)})
<H"(T({x € C(T,a,0/2,0):0™(un, x) = 1}~ (1))
< u(C(T.a,0.0)~C;) < 27" *wn0",
hence for B, := Y, N Y,/ N{x:8,(x) = Sp/2(x)}

H"(By) = (1/4H)wn(0/2)" for0 <o <,
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in particular
dmnR, = A, DY, D By #9, G(P,, QH" L T) < 0'%0.
By integration over the set B, with respect to 4" one obtains

((1/Hwn (/2 17V"G(Py, Pyp2)
= 8ol La* (1 Lvp) T N80r2Ml La* (1gn L v,
< 0"94 (Hy (1 Go(a),a, 0.0, Q. T) + Hy= (e Gopa(a), 0/2, 0/2, Q. T))
for 0 < ¢ < s. Therefore Theorem 4.4 (1) implies
G(Pp. Pyp2) < T2yt

where Ty = 24+1/4+2/4=2/n,)1/n =14 p | hence
o0
GOH" LT, Py) < 3. G(Py-iy, Py-i-1,) < 2layo' ™
i=0

because G(Py, QH" L. T) — 0 as ¢ | 0. From the definition of the ¢* height of 1 in
C(T,a, o0, 0) one obtains

Hy«(ueGgla),a, 0,0, QOH" L T) — Hy= (i Go(a), a, 0, 0, Pp)
=071 (W(C(T, a, 0,000 +H" (X)) GOH" T, Py) = T3y

for 0 < 0 < s where I'y = w7 2(Q + 1)!/4°25, hence

limsup o “Hy+ (1 Gola),a, 0,0, QOH" L T) < 81 + I3)y
0l0

by Theorem 4.4 (1). Combining this with the fact that

lim o=@ ="/ || dist(- — a, T,

im I L™ i B, @)~ Gotay) = O

since C; N BQ(a) C Gola) and ag* +n < nz/(n — p), the conclusion follows.
(2) may be proved by a similar but simpler argument using Theorem 4.4 (2) and [11, 2.5]
instead of Theorem 4.4 (1) and [11, 2.9, 2.10]. O

Remark 4.12 As in Remark 4.7, in (2) the L7 norm can be replaced by L™!, in particular
n = q = 1 is admissible. The latter fact can be derived without the use of Lorentz spaces, of
course.

Remark4.13 If 1 < p <n,1 <q1 <q2 < 00 L _np

aaep < 42 then the conclusion of (1)
fails for some p; in fact one can assume ¢; = g possibly enlarging ¢ and then take an = o
and o slightly larger than o in [11, 1.2]. Clearly, also in (2) the assumption p = n cannot

be weakened.
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