3,488 research outputs found

    Topological Dirac states beyond π\pi orbitals for silicene on SiC(0001) surface

    Full text link
    The discovery of intriguing properties related to the Dirac states in graphene has spurred huge interest in exploring its two-dimensional group-IV counterparts, such as silicene, germanene, and stanene. However, these materials have to be obtained via synthesizing on substrates with strong interfacial interactions, which usually destroy their intrinsic π\pi(pzp_z)-orbital Dirac states. Here we report a theoretical study on the existence of Dirac states arising from the px,yp_{x,y} orbitals instead of pzp_z orbitals in silicene on 4H-SiC(0001), which survive in spite of the strong interfacial interactions. We also show that the exchange field together with the spin-orbital coupling give rise to a detectable band gap of 1.3 meV. Berry curvature calculations demonstrate the nontrivial topological nature of such Dirac states with a Chern number C=2C = 2, presenting the potential of realizing quantum anomalous Hall effect for silicene on SiC(0001). Finally, we construct a minimal effective model to capture the low-energy physics of this system. This finding is expected to be also applicable to germanene and stanene, and imply great application potentials in nanoelectronics.Comment: 6 Figures , Accepted by Nano Letter

    Spontaneous time-reversal symmetry breaking in twisted double bilayer graphene

    Full text link
    Twisted double bilayer graphene (tDBG) comprises two Bernal-stacked bilayer graphene sheets with a twist between them. Gate voltages applied to top and back gates of a tDBG device tune both the flatness and topology of the electronic bands, enabling an unusual level of experimental control. Broken spin/valley symmetry metallic states have been observed in tDBG devices with twist angles \sim 1.2-1.3^\circ, but the topologies and order parameters of these states have remained unclear. We report the observation of an anomalous Hall effect in the correlated metal state of tDBG, with hysteresis loops spanning 100s of mT in out-of-plane magnetic field (BB_{\perp}) that demonstrate spontaneously broken time-reversal symmetry. The BB_{\perp} hysteresis persists for in-plane fields up to several Tesla, suggesting valley (orbital) ferromagnetism. At the same time, the resistivity is strongly affected by even mT-scale values of in-plane magnetic field, pointing to spin-valley coupling or to a direct orbital coupling between in-plane field and the valley degree of freedom

    The effects of hibernation on the contractile and biochemical properties of skeletal muscles in the thirteen-lined ground squirrel, Ictidomys tridecemlineatus

    Get PDF
    Hibernation is a crucial strategy of winter survival used by many mammals. During hibernation, thirteen-lined ground squirrels, Ictidomys tridecemlineatus, cycle through a series of torpor bouts, each lasting more than a week, during which the animals are largely immobile. Previous hibernation studies have demonstrated that such natural models of skeletal muscle disuse cause limited or no change in either skeletal muscle size or contractile performance. However, work loop analysis of skeletal muscle, which provides a realistic assessment of in vivo power output, has not previously been undertaken in mammals that undergo prolonged torpor during hibernation. In the present study, our aim was to assess the effects of 3 months of hibernation on contractile performance (using the work loop technique) and several biochemical properties that may affect performance. There was no significant difference in soleus muscle power output-cycle frequency curves between winter (torpid) and summer (active) animals. Total antioxidant capacity of gastrocnemius muscle was 156% higher in torpid than in summer animals, suggesting one potential mechanism for maintenance of acute muscle performance. Soleus muscle fatigue resistance was significantly lower in torpid than in summer animals. Gastrocnemius muscle glycogen content was unchanged. However, state 3 and state 4 mitochondrial respiration rates were significantly suppressed, by 59% and 44%, respectively, in mixed hindlimb skeletal muscle from torpid animals compared with summer controls. These findings in hindlimb skeletal muscles suggest that, although maximal contractile power output is maintained in torpor, there is both suppression of ATP production capacity and reduced fatigue resistance

    Ametryn removal by Metarhizium brunneum: Biodegradation pathway proposal and metabolic background revealed

    Get PDF
    Ametryn is a representative of a class of s-triazine herbicides absorbed by plant roots and leaves and characterized as a photosynthesis inhibitor. It is still in use in some countries in the farming of pineapples, soybean, corn, cotton, sugar cane or bananas; however, due to the adverse effects of s-triazine herbicides on living organisms use of these pesticides in the European Union has been banned. In the current study, we characterized the biodegradation of ametryn (100 mg L-1) by entomopathogenic fungal cosmopolite Metarhizium brunneum. Ametryn significantly inhibited the growth and glucose uptake in fungal cultures. The concentration of the xenobiotic drops to 87.75 mg L-1 at the end of culturing and the biodegradation process leads to formation of four metabolites: 2-hydroxy atrazine, ethyl hydroxylated ametryn, S-demethylated ametryn and deethylametryn. Inhibited growth is reflected in the metabolomics data, where significant differences in concentrations of L-proline, gamma-aminobutyric acid, L-glutamine, 4-hydroxyproline, L-glutamic acid, ornithine and L-arginine were observed in the presence of the xenobiotic when compared to control cultures. The metabolomics data demonstrated that the presence of ametryn in the fungal culture induced oxidative stress and serious disruptions of the carbon and nitrogen metabolism. Our results provide deeper insights into the microorganism strategy for xenobiotic biodegradation which may result in future enhancements to ametryn removal by the tested strain.National Science Center, Poland (Project No. 2015/19/B/NZ9/00167

    Increased Expression of Fatty Acid Synthase Provides a Survival Advantage to Colorectal Cancer Cells via Upregulation of Cellular Respiration

    Get PDF
    Fatty acid synthase (FASN), a lipogenic enzyme, is upregulated in colorectal cancer (CRC). Increased de novo lipid synthesis is thought to be a metabolic adaptation of cancer cells that promotes survival and metastasis; however, the mechanisms for this phenomenon are not fully understood. We show that FASN plays a role in regulation of energy homeostasis by enhancing cellular respiration in CRC. We demonstrate that endogenously synthesized lipids fuel fatty acid oxidation, particularly during metabolic stress, and maintain energy homeostasis. Increased FASN expression is associated with a decrease in activation of energy-sensing pathways and accumulation of lipid droplets in CRC cells and orthotopic CRCs. Immunohistochemical evaluation demonstrated increased expression of FASN and p62, a marker of autophagy inhibition, in primary CRCs and liver metastases compared to matched normal colonic mucosa. Our findings indicate that overexpression of FASN plays a crucial role in maintaining energy homeostasis in CRC via increased oxidation of endogenously synthesized lipids. Importantly, activation of fatty acid oxidation and consequent downregulation of stress-response signaling pathways may be key adaptation mechanisms that mediate the effects of FASN on cancer cell survival and metastasis, providing a strong rationale for targeting this pathway in advanced CRC

    Molecules of senescent glial cells differentiate Alzheimer's disease from ageing

    Get PDF
    BACKGROUND: Ageing is a major risk factor for Alzheimer's disease (AD), which is accompanied by cellular senescence and thousands of transcriptional changes in the brain. OBJECTIVES: To identify the biomarkers in the cerebrospinal fluid (CSF) that could help differentiate healthy ageing from neurodegenerative processes. METHODS: Cellular senescence and ageing-related biomarkers were assessed in primary astrocytes and postmortem brains by immunoblotting and immunohistochemistry. The biomarkers were measured in CSF samples from the China Ageing and Neurodegenerative Disorder Initiative cohort using Elisa and the multiplex Luminex platform. RESULTS: The cyclin-dependent kinase inhibitors p16/p21-positive senescent cells in human postmortem brains were predominantly astrocytes and oligodendrocyte lineage cells, which accumulated in AD brains. CCL2, YKL-40, HGF, MIF, S100B, TSP2, LCN2 and serpinA3 are biomarkers closely related to human glial senescence. Moreover, we discovered that most of these molecules, which were upregulated in senescent glial cells, were significantly elevated in the AD brain. Notably, CSF YKL-40 (β=0.5412, p<0.0001) levels were markedly elevated with age in healthy older individuals, whereas HGF (β=0.2732, p=0.0001), MIF (β=0.33714, p=0.0017) and TSP2 (β=0.1996, p=0.0297) levels were more susceptible to age in older individuals with AD pathology. We revealed that YKL-40, TSP2 and serpinA3 were useful biomarkers for discriminating patients with AD from CN individuals and non-AD patients. DISCUSSION: Our findings demonstrated the different patterns of CSF biomarkers related to senescent glial cells between normal ageing and AD, implicating these biomarkers could identify the road node in healthy path off to neurodegeneration and improve the accuracy of clinical AD diagnosis, which would help promote healthy ageing

    Artificial Enzyme-Powered Microfish for Water-Quality Testing

    Get PDF
    We present a novel micromotor-based strategy for water-quality testing based on changes in the propulsion behavior of artificial biocatalytic microswimmers in the presence of aquatic pollutants. The new micromotor toxicity testing concept mimics live-fish water testing and relies on the toxin-induced inhibition of the enzyme catalase, responsible for the biocatalytic bubble propulsion of tubular microengines. The locomotion and survival of the artificial microfish are thus impaired by exposure to a broad range of contaminants, that lead to distinct time-dependent irreversible losses in the catalase activity, and hence of the propulsion behavior. Such use of enzyme-powered biocompatible polymeric (PEDOT)/Au-catalase tubular microengine offers highly sensitive direct optical visualization of changes in the swimming behavior in the presence of common contaminants and hence to a direct real-time assessment of the water quality. Quantitative data on the adverse effects of the various toxins upon the swimming behavior of the enzyme-powered artificial swimmer are obtained by estimating common ecotoxicological parameters, including the EC_(50) (exposure concentration causing 50% attenuation of the microfish locomotion) and the swimmer survival time (lifetime expectancy). Such novel use of artificial microfish addresses major standardization and reproducibility problems as well as ethical concerns associated with live-fish toxicity assays and hence offers an attractive alternative to the common use of aquatic organisms for water-quality testing

    Regional variation of organic functional groups in aerosol particles on four U.S. east coast platforms during the International Consortium for Atmospheric Research on Transport and Transformation 2004 campaign

    Get PDF
    Submicron atmospheric aerosol samples were collected during the International Consortium for Atmospheric Research on Transport and Transformation (ICARTT) 2004 campaign on four platforms: Chebogue Point (Nova Scotia, Canada), Appledore Island (Maine), the CIRPAS Twin Otter over Ohio, and the NOAA R/V Ronald H. Brown in the Gulf of Maine. Saturated aliphatic C-C-H, unsaturated aliphatic C=C−H, aromatic C=C−H, organosulfur C-O-S, carbonyl C=O, and organic hydroxyl C-OH functional groups were measured by calibrated Fourier Transform Infrared (FTIR) spectroscopy at all four sampling platforms. The ratio of molar concentrations of carbonyl C=O to saturated aliphatic C-C-H groups was nearly constant at each sampling platform, with the Twin Otter samples having the lowest ratio at 0.1 and the three more coastal platforms having ratios of 0.4 and 0.5. Organic mass (OM) to organic carbon (OC) ratios follow similar trends for the four platforms, with the Twin Otter having the lowest ratio of 1.4 and the coastal platforms having slightly higher values typically between 1.5 and 1.6. Organosulfur compounds were occasionally observed. Collocated organic aerosol sampling with two Aerodyne aerosol mass spectrometers for OM, a Sunset Laboratory thermo-optical analysis instrument for OC, and an ion chromatography-particle into liquid sampler (IC-PILS) for speciated carboxylic acids provided comparable results for most of the project, tracking the time series of FTIR OM, OC, and carbonyl groups, respectively, and showing simultaneous peaks of similar magnitude during most of the project. The FTIR/IC-PILS comparison suggests that about 9% of the carbonyl groups found in submicron organic particles on the Twin Otter are typically associated with low molecular weight carboxylic acids
    corecore