23 research outputs found

    Computational investigation of cancer genomes

    Get PDF
    Cancer is a leading cause of death worldwide, and its incidence is increasing due to modern lifestyle that prolonged human life. All cancers originate from a single cell that had acquired genetic aberrations enabling uncontrolled proliferation. Each cancer is unique in its aberrant genetic makeup, which defines, to large extent, its biology, aggressiveness, and vulnerabilities to different treatments. Furthermore, the genetic makeup of each cancer is heterogeneous among its constituent cancer cells, and dynamic with the ability to evolve in order to preserve the survival of cancer cells. Sequencing technologies are currently producing massive amounts of data that, with the help of specialized computational methods, can revolutionize our knowledge on cancer. A key question in cancer research is how to personalize the treatment of cancer patients, so that each cancer is treated according to its molecular characteristics. The first study in this thesis takes a step in that direction through a proposed novel molecular classification system of diffuse large B-cell lymphoma (DLBCL), which is the most common hematological malignancy in adults. The suggested classification, derived from the integrative analysis of gene expression and DNA mutations, stratifies DLBCL into four groups with distinct biology, genetic landscapes, and clinical outcome. These subtypes could help identify patients at high risk who may benefit from an altered treatment plan. Understanding the genomic evolution of cancer that transforms a typically curable primary tumor into an incurable drug-resistant metastasis is another aspect of cancer research under intensive investigation. The second study in this thesis investigates the spreading patterns of metastasis in breast cancer, which is the most common cancer in women. Using phylogenetic analysis of somatic mutations from longitudinal breast cancer samples, the metastasis routes were uncovered. The study revealed that breast cancer spreads either in parallel from primary tumor to multiple distant sites, or linearly from primary tumor to a distant site, and then from that to another. However, in all cases, axillary lymph nodes did not mediate the spreading to distant sites. This provided a genetic-based evidence on the redundancy of lymph node dissection in breast cancer management. Towards a genetic-based diagnostics in cancer, the computational methods used to detect genetic aberrations need to be evaluated for their accuracy. The third study in this thesis performs a comparison of methods for detecting somatic copy number alterations from cancer samples. The study evaluated several commonly used methods for two different sequencing platforms using simulated and real cancer data. The results provided an overview of the weaknesses of the different methods that could be methodologically improved. Altogether, this thesis gives an overview on the field of computational cancer genomics and presents three studies that exemplify the clinical relevance of computational research.Not availabl

    Lung metastases and subsequent malignant transformation of a fumarate hydratase-deficient uterine leiomyoma

    Get PDF
    Uterine leiomyomas, or fibroids, are very common smooth muscle tumors. Their potential to metastasize or transform into leiomyosarcomas is extremely low. Here, we report a patient who underwent hysterectomy due to a large leiomyoma and who was diagnosed with pulmonary tumors seven and nine years later. Histopathological re-evaluation confirmed the cellular leiomyoma diagnosis for the uterine tumor, whereas the pulmonary tumors met the diagnostic criteria of a leiomyosarcoma. Whole-exome sequencing revealed very similar mutational profiles in all three tumors, including a somatic homozygous deletion in a rare, but well-established leiomyoma driver gene FH. Tumor evolution analysis confirmed the clonal origin of all three tumors. In addition to mutations shared by all three tumors, pulmonary tumors harbored additional alterations affecting e.g. the cancer associated genes NRG1 and MYOCD. The second pulmonary leiomyosarcoma harbored additional changes, including a mutation in FGFR1. In global gene expression profiling, the uterine tumor showed similar expression patterns as other FH-deficient leiomyomas. Taken together, this comprehensive molecular data supports the occasional metastatic capability and malignant transformation of uterine leiomyomas. Further studies are required to confirm whether FH-deficient tumors and/or tumors with cellular histopathology have higher malignant potential than other uterine leiomyomas.Peer reviewe

    Exome sequencing of primary breast cancers with paired metastatic lesions reveals metastasis-enriched mutations in the A-kinase anchoring protein family (AKAPs)

    Get PDF
    Abstract Background Tumor heterogeneity in breast cancer tumors is today widely recognized. Most of the available knowledge in genetic variation however, relates to the primary tumor while metastatic lesions are much less studied. Many studies have revealed marked alterations of standard prognostic and predictive factors during tumor progression. Characterization of paired primary- and metastatic tissues should therefore be fundamental in order to understand mechanisms of tumor progression, clonal relationship to tumor evolution as well as the therapeutic aspects of systemic disease. Methods We performed full exome sequencing of primary breast cancers and their metastases in a cohort of ten patients and further confirmed our findings in an additional cohort of 20 patients with paired primary and metastatic tumors. Furthermore, we used gene expression from the metastatic lesions and a primary breast cancer data set to study the gene expression of the AKAP gene family. Results We report that somatic mutations in A-kinase anchoring proteins are enriched in metastatic lesions. The frequency of mutation in the AKAP gene family was 10% in the primary tumors and 40% in metastatic lesions. Several copy number variations, including deletions in regions containing AKAP genes were detected and showed consistent patterns in both investigated cohorts. In a second cohort containing 20 patients with paired primary and metastatic lesions, AKAP mutations showed an increasing variant allele frequency after multiple relapses. Furthermore, gene expression profiles from the metastatic lesions (n = 120) revealed differential expression patterns of AKAPs relative to the tumor PAM50 intrinsic subtype, which were most apparent in the basal-like subtype. This pattern was confirmed in primary tumors from TCGA (n = 522) and in a third independent cohort (n = 182). Conclusion Several studies from primary cancers have reported individual AKAP genes to be associated with cancer risk and metastatic relapses as well as direct involvement in cellular invasion and migration processes. Our findings reveal an enrichment of mutations in AKAP genes in metastatic breast cancers and suggest the involvement of AKAPs in the metastatic process. In addition, we report an AKAP gene expression pattern that consistently follows the tumor intrinsic subtype, further suggesting AKAP family members as relevant players in breast cancer biology

    Exome sequencing of primary breast cancers with paired metastatic lesions reveals metastasis-enriched mutations in the A-kinase anchoring protein family (AKAPs)

    Get PDF
    Background: Tumor heterogeneity in breast cancer tumors is today widely recognized. Most of the available knowledge in genetic variation however, relates to the primary tumor while metastatic lesions are much less studied. Many studies have revealed marked alterations of standard prognostic and predictive factors during tumor progression. Characterization of paired primary- and metastatic tissues should therefore be fundamental in order to understand mechanisms of tumor progression, clonal relationship to tumor evolution as well as the therapeutic aspects of systemic disease. Methods: We performed full exome sequencing of primary breast cancers and their metastases in a cohort of ten patients and further confirmed our findings in an additional cohort of 20 patients with paired primary and metastatic tumors. Furthermore, we used gene expression from the metastatic lesions and a primary breast cancer data set to study the gene expression of the AKAP gene family. Results: We report that somatic mutations in A-kinase anchoring proteins are enriched in metastatic lesions. The frequency of mutation in the AKAP gene family was 10% in the primary tumors and 40% in metastatic lesions. Several copy number variations, including deletions in regions containing AKAP genes were detected and showed consistent patterns in both investigated cohorts. In a second cohort containing 20 patients with paired primary and metastatic lesions, AKAP mutations showed an increasing variant allele frequency after multiple relapses. Furthermore, gene expression profiles from the metastatic lesions (n = 120) revealed differential expression patterns of AKAPs relative to the tumor PAM50 intrinsic subtype, which were most apparent in the basal-like subtype. This pattern was confirmed in primary tumors from TCGA (n = 522) and in a third independent cohort (n = 182). Conclusion: Several studies from primary cancers have reported individual AKAP genes to be associated with cancer risk and metastatic relapses as well as direct involvement in cellular invasion and migration processes. Our findings reveal an enrichment of mutations in AKAP genes in metastatic breast cancers and suggest the involvement of AKAPs in the metastatic process. In addition, we report an AKAP gene expression pattern that consistently follows the tumor intrinsic subtype, further suggesting AKAP family members as relevant players in breast cancer biology.Peer reviewe

    Intra-tumor heterogeneity in breast cancer has limited impact on transcriptomic-based molecular profiling

    Get PDF
    Background: Transcriptomic profiling of breast tumors provides opportunity for subtyping and molecular-based patient stratification. In diagnostic applications the specimen profiled should be representative of the expression profile of the whole tumor and ideally capture properties of the most aggressive part of the tumor. However, breast cancers commonly exhibit intra-tumor heterogeneity at molecular, genomic and in phenotypic level, which can arise during tumor evolution. Currently it is not established to what extent a random sampling approach may influence molecular breast cancer diagnostics. Methods: In this study we applied RNA-sequencing to quantify gene expression in 43 pieces (2-5 pieces per tumor) from 12 breast tumors (Cohort 1). We determined molecular subtype and transcriptomic grade for all tumor pieces and analysed to what extent pieces originating from the same tumors are concordant or discordant with each other. Additionally, we validated our finding in an independent cohort consisting of 19 pieces (2-6 pieces per tumor) from 6 breast tumors (Cohort 2) profiled using microarray technique. Exome sequencing was also performed on this cohort, to investigate the extent of intra-tumor genomic heterogeneity versus the intra-tumor molecular subtype classifications. Results: Molecular subtyping was consistent in 11 out of 12 tumors and transcriptomic grade assignments were consistent in 11 out of 12 tumors as well. Molecular subtype predictions revealed consistent subtypes in four out of six patients in this cohort 2. Interestingly, we observed extensive intra-tumor genomic heterogeneity in these tumor pieces but not in their molecular subtype classifications. Conclusions: Our results suggest that macroscopic intra-tumoral transcriptomic heterogeneity is limited and unlikely to have an impact on molecular diagnostics for most patients.Peer reviewe

    PRISM : recovering cell-type-specific expression profiles from individual composite RNA-seq samples

    Get PDF
    Motivation: A major challenge in analyzing cancer patient transcriptomes is that the tumors are inherently heterogeneous and evolving. We analyzed 214 bulk RNA samples of a longitudinal, prospective ovarian cancer cohort and found that the sample composition changes systematically due to chemotherapy and between the anatomical sites, preventing direct comparison of treatment-naive and treated samples. Results: To overcome this, we developed PRISM, a latent statistical framework to simultaneously extract the sample composition and cell-type-specific whole-transcriptome profiles adapted to each individual sample. Our results indicate that the PRISM-derived composition-free transcriptomic profiles and signatures derived from them predict the patient response better than the composite raw bulk data. We validated our findings in independent ovarian cancer and melanoma cohorts, and verified that PRISM accurately estimates the composition and cell-type-specific expression through whole-genome sequencing and RNA in situ hybridization experiments.Peer reviewe

    Genetic predisposition to uterine leiomyoma is determined by loci for genitourinary development and genome stability

    Get PDF
    Uterine leiomyomas (ULs) are benign tumors that are a major burden to women's health. A genome-wide association study on 15,453 UL cases and 392,628 controls was performed, followed by replication of the genomic risk in six cohorts. Effects of the risk alleles were evaluated in view of molecular and clinical characteristics. 22 loci displayed a genome-wide significant association. The likely predisposition genes could be grouped to two biological processes. Genes involved in genome stability were represented by TERT, TERC, OBFC1 - highlighting the role of telomere maintenance - TP53 and ATM. Genes involved in genitourinary development, WNT4, WT1, SALL1, MED12, ESR1, GREB1, FOXO1, DMRT1 and uterine stem cell marker antigen CD44, formed another strong subgroup. The combined risk contributed by the 22 loci was associated with MED12 mutation-positive tumors. The findings link genes for uterine development and genetic stability to leiomyomagenesis, and in part explain the more frequent occurrence of UL in women of African origin.Peer reviewe

    MicroRNAs regulate key cell survival pathways and mediate chemosensitivity during progression of diffuse large B- cell lymphoma

    Get PDF
    Despite better therapeutic options and improved survival of diffuse large B-cell lymphoma (DLBCL), 30-40% of the patients experience relapse or have primary refractory disease with a dismal prognosis. To identify biological correlates for treatment resistance, we profiled microRNAs (miRNAs) of matched primary and relapsed DLBCL by next-generation sequencing. Altogether 492 miRNAs were expressed in the DLBCL samples. Thirteen miRNAs showed significant differential expression between primary and relapse specimen pairs. Integration of the differentially expressed miRNAs with matched mRNA expression profiles identified highly anti-correlated, putative targets, which were significantly enriched in cancer-associated pathways, including phosphatidylinositol (PI)), mitogen-activated protein kinase (MAPK), and B-cell receptor (BCR) signaling. Expression data suggested activation of these pathways during disease progression, and functional analyses validated that miR-370-3p, miR-381-3p, and miR-409-3p downregulate genes on the PI, MAPK, and BCR signaling pathways, and enhance chemosensitivity of DLBCL cells in vitro. High expression of selected target genes, that is, PIP5K1 and IMPA1, was found to be associated with poor survival in two independent cohorts of chemoimmunotherapy-treated patients (n = 92 and n = 233). Taken together, our results demonstrate that differentially expressed miRNAs contribute to disease progression by regulating key cell survival pathways and by mediating chemosensitivity, thus representing potential novel therapeutic targets.Peer reviewe

    PRISM: Recovering cell type specific expression profiles from individual composite RNA-seq samples

    Get PDF
    Motivation: A major challenge in analyzing cancer patient transcriptomes is that the tumors are inherently heterogeneous and evolving. We analyzed 214 bulk RNA samples of a longitudinal, prospective ovarian cancer cohort and found that the sample composition changes systematically due to chemotherapy and between the anatomical sites, preventing direct comparison of treatment-naive and treated samples.Results: To overcome this, we developed PRISM, a latent statistical framework to simultaneously extract the sample composition and cell type specific whole-transcriptome profiles adapted to each individual sample. Our results indicate that the PRISM-derived composition-free transcriptomic profiles and signatures derived from them predict the patient response better than the composite raw bulk data. We validated our findings in independent ovarian cancer and melanoma cohorts, and verified that PRISM accurately estimates the composition and cell type specific expression through whole-genome sequencing and RNA in situ hybridization experiments.</p
    corecore