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Abstract

Motivation: A major challenge in analyzing cancer patient transcriptomes is that the tumors are inherently heteroge-
neous and evolving. We analyzed 214 bulk RNA samples of a longitudinal, prospective ovarian cancer cohort and
found that the sample composition changes systematically due to chemotherapy and between the anatomical sites,
preventing direct comparison of treatment-naive and treated samples.

Results: To overcome this, we developed PRISM, a latent statistical framework to simultaneously extract the sample
composition and cell-type-specific whole-transcriptome profiles adapted to each individual sample. Our results indi-
cate that the PRISM-derived composition-free transcriptomic profiles and signatures derived from them predict the
patient response better than the composite raw bulk data. We validated our findings in independent ovarian cancer
and melanoma cohorts, and verified that PRISM accurately estimates the composition and cell-type-specific expres-
sion through whole-genome sequencing and RNA in situ hybridization experiments.

Availabilityand implementation: https://bitbucket.org/anthakki/prism.

Contact: antti.e.hakkinen@helsinki.fi or sampsa.hautaniemi@helsinki.fi

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Precision oncology aims to identify targetable alterations based on
molecular profiling of tumors (Schwartzberg et al., 2017). As can-
cers are heterogeneous diseases that evolve during treatment and fol-
low-up (Aparicio and Caldas, 2013; Hanahan and Weinberg, 2011),
an essential part is the use of transcriptomic data from samples col-
lected before, during and after therapy (Karczewski and Snyder,
2018; Lin and Yang, 2019). However, a major unresolved challenge
in analyzing longitudinal data is that the sample composition, i.e.
the fraction of cancer, stromal and immune cells, in the patient-
derived samples varies significantly, which severely hinders subse-
quent analyses (Aran et al., 2015).

Alleviating the sample composition issue by discarding low
tumor content samples (The Cancer Genome Atlas Research

Network, 2011, 2015) can bias the sampling to contain only cancer
cell rich tumors and exclude samples from good-responding patients
during therapy, which is detrimental in longitudinal cohorts.
Current computational correction approaches are not ideally suited
for precision oncology needs as they focus on either immune or stro-
mal signatures and employ preset expression profiles (Schelker
et al., 2018; Sun et al., 2019; Yoshihara et al., 2013), derive the sam-
ple composition without estimating the transcriptomic profiles
(Newman et al., 2015; Wang et al., 2019), operate at a population
level (Newman et al., 2019) or lack ability to adapt to patients lack-
ing a matched single-cell data (Frishberg et al., 2019; Newman
et al., 2019).

To counter this, we present PRISM (Poisson RNA-profile
Identification in Scaled Mixtures), which is a statistical latent vari-
able framework for RNA-seq data. Compared with the existing
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methods, PRISM is unique in that it estimates both the composition
and the constituent expression profiles simultaneously in individual
bulk samples, a combination which was previously unmet. This is
achieved by exploiting a single-cell reference, which is subject to the
statistical model rather than being treated as ground truth, which
allows PRISM to form adaptive profiles even for unmatched data.
These estimates provide personalized expression profiles that are un-
biased to changes in the sample composition, enabling tracking the
tumor progression in individual patients.

We applied PRISM on 214 bulk RNA-seq samples that were lon-
gitudinally collected from homogeneously treated high-grade serous
ovarian cancer (HGSOC) patients. HGSOC is the most common
subtype of epithelial ovarian cancer (EOC) with only 43% five-year
survival rate (Torre et al., 2018). It is one of the most genomically
heterogeneous cancers, characterized by high number of structural
changes (Ciriello et al., 2013), highlighting the importance of tran-
scriptomic analysis and challenges in sample comparison. Our
results show that the PRISM-estimated cell-type-specific expression
profiles and cancer subtypes derived from them better predict dis-
ease progression than those of the composite raw bulk data. After
validating the accuracy of the compositional estimates using whole-
genome sequencing (WGS) and the cell-type specificity of expression
levels using RNA in situ hybridization (RNA-ish) experiments, we
confirmed the improved survival prediction in other cohorts and
cancer types by using The Cancer Genome Atlas (TCGA) data.

2 Materials and methods

2.1 Patient and sample characteristics
The patient cohort consists of patients treated for ovarian or pri-
mary peritoneal HGSOC at Turku University Hospital between
September 2010 and October 2018. All patients participating in the
study gave written informed consent. The study and the use of all
clinical material have been approved by The Ethics Committee of
the Hospital District of Southwest Finland (ETMK) under decision
number EMTK: 145/1801/2015.

We acquired 214 bulk RNA sequencing samples from 61 of the
patients. Of these, 120 are primary (before chemotherapy), 60 inter-

val (after chemotherapy) and 20 relapsed tumors (after being diag-
nosed as recurring). The samples are from primary ovarian tumors

and various sites of intra-abdominal solid metastases and ascites
fluid, as detailed in the analysis. Figure 1a shows an overview of the
sampling. Patient response is classified as complete response, partial

response, stable disease or progressive disease according to the
RECIST criteria (version 1.1) (Eisenhauer et al., 2009). The sample
collection and analysis is part of the HERCULES project (http://

www.project-hercules.eu/).

2.2 Single-cell RNA-seq sample preparation
Immediately after surgery, the HGSOC tumor specimens from our

cohort were incubated overnight in a mixture of collagenase and
hyaluronidase (Department of Pathology, University of Turku) to
obtain single cell suspensions. Specimens were processed with a

modified Fluidigm C1 protocol (Islam et al., 2014) or the standard
Chromium Single Cell 30 Reagent Kit v. 2.0 (10� Genomics) proto-

col for single-cell RNA sequencing with Illumina (HiSeq2000 for
Fluidigm C1, HiSeq4000 or NextSeq for Chromium specimens)
(Jussi Taipale Lab, Karolinska Institute or Functional Genomics

Unit, University of Helsinki).
We acquired 6312 single cell profiles from 8 samples (from 7

patients and from various tissues) using the Chromium platform,
and 347 cells from 8 samples (8 patients) using the Fluidigm single-

cell sequencing platform. The latter were used for comparison pur-
poses only. The single-cell samples were all matched to the bulk
RNA samples but most bulk RNA samples remain unmatched. The

single-cell reference need not to be matched to the bulk samples, but
it needs to span sufficient expression state-space for PRISM to be

able to adapt to unmatched profiles in the bulk samples.

Fig. 1. Overview of the sample collection, data analysis and the PRISM model. (a) Samples are collected from high-grade serous ovarian cancer (HGSOC) patients before neo-

adjuvant chemotherapy (120 samples), after three rounds of chemotherapy in the interval debulking surgery (60) and from relapsed cancers (20). For reference, we used single-

cell RNA-seq data from eight matched samples (6312 cells). Anatomical locations of the samples are indicated as follows: Asc (ascites), LN (lymph node), Ome (omentum),

Ova (ovary), Per (peritoneum), Tub (fallopian tube), Ute (uterus). (b) PRISM allows decomposing each bulk sample using a panel of single-cell samples, revealing the bulk

compositions and expression profiles for each constituent cell type. Afterwards, differential expression or the compositional differences can be associated with patient response

and survival independently. (c) Plate graph for the PRISM framework described by the physical constants, i.e. number of cells (N), sampling efficiency (g), expression variabil-

ity (t�1) and expression mean (k) generating the latent RNA count ~Z and readout Z for each gene and cell type in a sample. As the physical parameters are not identifiable, we

parametrize the problem using mean expression (X), readout precision (T), sample scaling factor (G) and relative sample composition (W ). These parameters can be estimated

from a set of mixture readouts (Y), which need not to be unimodal, by assuming the cell-type-specific readouts (Z) are scaled Poisson distributed
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2.3 RNA-seq preprocessing
Bulk RNA sequencing reads were preprocessed using the SePIA
(Icay et al., 2016) pipeline within the Anduril framework (Cervera
et al., 2019). Read pairs were trimmed using Trimmomatic (version

0.33) (Bolger et al., 2014) as follows: (i) the first 12 bases were
cropped due to uneven per base sequence content; (ii) any leading

bases with a quality score lower than 20 and any trailing bases with
a quality score lower than 30 were removed; (iii) the reads were
scanned with a 5-base wide sliding window, cutting when the aver-

age quality per base drops below 20; (iv) resulting sequences shorter
than 20 bp were discarded. Trimmed reads were aligned to the

GRCh38.d1.vd1 reference genome with GENCODE v25 annotation
using STAR (version 2.5.2b) (Dobin et al., 2013), allowing up to 10
mismatches, and all alignments for a read were output. Gene level

effective counts (we found these to be more accurate than the raw
read counts) were quantified using eXpress (version 1.5.1-

linux_x86_64) (Roberts and Pachter, 2013).
For the single-cell sequencing data, the raw base call (BCL) files

were processed, including demultiplexing, alignment, barcode as-
signment and UMI quantification, with CellRanger (version 2.1.1)
pipelines. The reference index was built upon the GRCh38.d1.vd1

reference genome with GENCODE v25 annotation. Single-cell tran-
scriptomes were clustered using a shared nearest neighbor (SNN)
modularity optimization based clustering algorithm implemented in

Seurat (version 2.3.4) (Satija et al., 2015). PCA was selected as di-
mensional reduction technique in construction of SNN graph. Cell

types were annotated based on acknowledged markers: epithelial cell
markers: WFDC2, PAX8, MUC16, EPCAM, KRT18; stromal cell
markers: COL1A2, FGFR1, DCN; immune cell markers: CD14,

CD79A, FCER1G, PTPRC, NKG7, CD3D, CD8A.

2.4 Modeling RNA expression data
We assume that latent cell-type-specific RNA counts Zilj 2 Z�0 exist,

and can be approximated by a scaled Poisson distribution, i.e.

TilZilj � PðTilXilW ljGjÞ, where the index i 2 Z½1;m� runs over the m

genes, l 2 Z½1;k� over the k cell types, and j 2 Z½1;n� over the n samples,

and Xil 2 R�0 represents the cell-type-specific average expression

profile, Til
�1 2 R�0 is the dispersion (specific to each cell type and

gene), W lj 2 R�0 the convex composition (
Pk

l¼1

W lj ¼ 1), Gj 2 R�0 the

sample specific scale factor, and PðkÞ Poisson distribution with a
mean of k. This approach allows capturing both biological and tech-

nical noise and accommodates either overdispersion (as commonly
observed) and underdispersion (which improves stability under sys-

tematic errors) with respect to Poisson noise. The posterior of the

observed
Pk

i¼l

Zilj does not feature a closed form, but we show how to

fit such models using an iterative algorithm (see Supplementary
Material). Unlike previous models (McCarthy et al., 2012; Robinson
et al., 2010), we are not inconvenienced by the posterior tractability

and account for the discrete and heteroscedastic nature of the data
(i.e. genes and cell types are not equally reliable and informative),

and freely varying dispersion confers estimator robustness.

2.5 Decomposing bulk data using single-cell data
The model can be exploited for decomposing bulk data by consider-

ing a joint model on the bulk y
ð1Þ
ir 2 Z�0 and single-cell data

Y
ð0Þ
ij 2 Z�0. Each bulk sample is analyzed separately, but could have

multiple replicates, indexed by r, with different composition but
equal expression profiles. For each bulk sample, we assume that a

cell type (and bulk specific) expression profiles ðXil ;TilÞ exist, as
specified in the previous section, composing the bulk and being simi-
lar to the single-cell data, i.e.:

TilZ
ð1Þ
ilr � PðTilXilw

ð1Þ
lr G

ð1Þ
r Þ st: y

ð1Þ
ir ¼

Xk

l¼1

Z
ð1Þ
ilr ;

TilZ
ð0Þ
ilj � PðTilXilW

ð0Þ
lj G

ð0Þ
j Þ st:Y

ð0Þ
ij ¼

Xk

l¼1

Z
ð0Þ
ilj ;

(1)

where �ð0Þ and �ð1Þ refer to single-cell and bulk specific variables, re-

spectively, yð0Þ and Yð1Þ being the single-cell and bulk data, Zð0Þ and

Zð1Þ their latent random state, wð0Þ and W
ð1Þ

their convex compos-

ition, and Gð0Þ and Gð1Þ the sample scale factors. Again, i runs over
the genes, l over the cell types, j over the single-cell profiles and r
over the bulk replicates (typically r¼1). As Til can vary, the decom-
position will weigh in the genes that are informative in discriminat-

ing the cell types. The cell-type-specific contributions ŷ
ð1Þ
:lr of the

bulk y
ð1Þ
:;r can be estimated as:

ŷ
ð1Þ
ilr ¼
:
E½Zð1Þilr jX̂i:; T̂ i:; ŵ

ð1Þ
:r
; y
ð1Þ
ir � �

X̂ilŵ
ð1Þ
lr y

ð1Þ
ir

Xk

l0¼1

X̂il0 ŵ
ð1Þ
l0r

(2)

where E½�� is expectation,^are the maximum likelihood estimates of
the model fit of Eq. (1), as given by Supplementary Algorithm S1,
and : denotes all indices over a subscript. Further, ŵ

ð1Þ
:r and Ĝ

ð1Þ
r

serve as estimators of the composition and the scale factor, respect-
ively. This process exploits all genes and all the single-cell data, but
automatically downweights the non-relevant information across the
two datasets to adopt to heterogeneous settings. The relationships
between the data are illustrated in Supplementary Figure S1, the
relationships between the variables in Supplementary Figure S2, and
a plate diagram for the full model of the decomposition process
show in Supplementary Figure S3.

2.6 Estimating scale factors
In mixtures, the scale factors are naturally estimated as part of the
deconvolution process. Meanwhile, in pure (single-component) sam-
ples, the scale factors can be estimated by considering a fraction a of
unperturbed genes, and finding an unperturbed common subprofile

ðxð>Þ; tð>ÞÞ, i.e. t
ð>Þ
i Zij � Pðtð>Þi x

ð>Þ
i GjÞ for some sparse set of genes

i 2 Xj 	 Z½1;m� st. jXij ¼ am, revealing a global relative scaling factor

Gj for each single-cell sample (Supplementary Algorithm S2). Here,

�ð>Þ denotes variables that are common to all samples. In the absence
of any better rationale, a ¼ 50% was used.

2.7 Discovering constituent phenotypes
In the decomposition, the composition Wð0Þ of the reference profiles
(i.e. single-cell data) can be either preset or let vary freely. For more
complex analyses, we also devised a hierarchical clustering process
(Supplementary Algorithm S3) that exploits our model and reveals

the cell types independently of the bulk. For this, TilZ
ð0Þ
ilj �

PðTilXilW
ð0Þ
lj G

ð0Þ
j Þ st. Y

ð0Þ
ij ¼

Pk

l¼1

Z
ð0Þ
ilj , for the single-cell data Yð0Þ,

but a binary composition W
ð0Þ

is built up agglomeratively. This pro-
cedure is more stable against the multiple optima than an iterative
algorithm, and allows selecting the optimal number of components
using statistical means, such as Bayesian information criterion (BIC)
unlike general-purpose clustering algorithms (see Supplementary
Fig. S4).

2.8 RNA in situ hybridization
Formalin-fixed paraffin embedded (FFPE) tissue sections were ana-
lyzed using the RNAscope Multiplex Fluorescent Reagent Kit ver-
sion 2 (#323100, Advanced Cell Diagnostics). We used catalog
probes (Supplementary Table S1) for the target RNAs for quantifi-
cation and a positive and negative controls to verify good signal.
The protocol is detailed in Supplementary Material.

2884 A.Häkkinen et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/37/18/2882/6171182 by guest on 14 January 2022

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab178#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab178#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab178#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab178#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab178#supplementary-data


For fluorescence quantification, we used CellProfiler (version
3.1.8) (Kamentsky et al., 2011) for segmentation, a Laplacian of
Gaussian filter applied on a non-orthogonal basis projection for
spot quantification, and cell classification based on fluorescence co-
sine-distance clustering (see Supplementary Material).

3 Results and discussion

3.1 PRISM: a latent statistical framework for recovering

cell-type-specific expression profiles from RNA-seq

data
PRISM employs a latent statistical model for composite (a mixture
of multiple phenotypes) RNA-seq data, which accounts biological
heterogeneity, compositional heterogeneity and sampling noise. The
estimated model can be exploited for decomposing bulk RNA-seq
data, finding sample specific scale factors or clustering RNA-seq
data. An overview of PRISM is shown in Figure 1, details are given
in Methods, and derivation in Supplementary Material. Briefly,
given a bulk RNA sample, PRISM estimates the frequency and a
sample specific whole-transcriptome profile for each cell type, by
exploiting a labeled set of heterogeneous single-cell data for the
desired cell types. The single-cell data need not be from matching
tumors, but a set of sample capturing the between-patient hetero-
geneity in each cell type suffices. In the absence of labels, PRISM
can derive a labeling through clustering (see Supplementary Fig. S5).
PRISM is freely available at https://bitbucket.org/anthakki/prism/.

3.2 Tumor composition depends systematically on the

treatment phase and the anatomical location
We first studied how the composition of HGSOC bulk samples
varies over the treatment phase, the anatomical location and the
treatment response (cf. Fig. 1a). Figure 2 shows the distribution of
the PRISM-derived sample compositions. Samples taken before the
treatment contain �70% cancer cells, while the interval samples
taken after neoadjuvant chemotherapy (NACT) contain only �40%
cancer cells, along with more fibroblasts and immune cells and the
relapse samples contain more cancer and immune cells than the
treatment-naive and interval samples (Fig. 2a). This is expected, as
HGSOC is typically diagnosed at advanced stage with high tumor
burden, and �80% of the patients respond well to the first-line ther-
apy (Ledermann et al., 2013). The results reveal, however, that a
direct comparison of treatment-naive and interval samples without
compositional analysis is severely biased by the compositional
changes.

Specifically, the fraction of cancer cells and fibroblasts vary sig-
nificantly between the treatment-naive and interval samples, even

when accounting for anatomical sites (P-value prc < 3 � 10�6 for no
partial rank correlation in a t-test), whereas the number of immune
cells does not (prc ¼ 0:7). Similarly, we found a significant difference
between the interval and relapsed cancers (prc < 0:007), but no dif-
ference between the primary and the relapsed samples (prc > 0:07),
when accounting for the anatomical site. We also quantified, for the
first time, the impact of anatomical sites to the sample composition:
omentum, ovary and peritoneum have similar composition
(prc > 0:06), when accounting for the treatment phase differences
(Fig. 2c). Also fallopian tube and uterus are similar with each other,
whereas the composition of the ascites samples differs significantly
from the solid samples (prc < 0:0003; Fig. 2c).

Tumor composition differences between the complete response
versus progressive disease groups (Fig. 2b) are explained solely by
the variations in the treatment phase (Fig. 2a) and anatomical site
(Fig. 2c) of the sample (prc > 0:09), which both contribute inde-
pendent variation. Consequently, we argue that the composition of
a patient bulk tissue sample is a strong confounder, but not a major
predictive factor the patient response, necessitating expression pro-
file analysis that controls for the sample composition.

3.3 Decomposing bulk RNA-seq data enables cell-type-

specific gene expression analysis
Next, we examined the PRISM-derived cell-type-specific expression
profiles in the cancer, stromal and immune cells. Figure 3a shows
that the expression levels of well-known cell-type-specific genes are
higher in the respective cell type (P-value pm < 2 � 10�15 for equal
medians in a rank-sum test), and that the cell-type-specific expres-
sion is enriched in the decomposed profiles with respect to the com-
posite bulk (pm < 0:0009). These imply that, the composite
expression signal is also diluted by the presence of non-specific sig-
nals, masking cell-type-specific phenotypic changes. The cell-type
specificity of known housekeeping genes (Hsiao et al., 2001) is sig-
nificantly lower than other genes with comparable expression level
(pm < 6 � 10�6), suggesting the specificity is well-founded.

We performed variance analysis (ANOVA; see Supplementary
Material) of the ranked expression data to quantify the extent to
which the composite expression profiles are corrupted by the sample
composition. In the composite data, �40 to 90% (prc < 0:0003) of
the variation is explained solely by the composition, as shown
Figure 3b. Interestingly, the effect varies between the genes. For in-
stance, KIF1A expression has only 16% compositional effect,
whereas C1R expression is explained by 77% by the composition,
and the immune specific genes, e.g. PPBP, are more susceptible of
having a cancer or fibroblast component. This suggests that the im-
mune cell gene expression patterns are more dependent on the
microenvironment composition than that of the other cell types.
Consequently, previous analyses performed on patient tissue sam-
ples without accounting for the compositional factors likely remain
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useful, but may be biased toward findings in less compositionally
affected gene sets.

When analyzing the PRISM-derived cell-type-specific profiles,
only �0 to 15% of variation is explained by the composition, as
shown in Figure 3b. This indicates that PRISM can eliminate the
confounding effect of composition variation in the decomposed sig-
nals and enrich the sample specific signal of the constituent cell
types, as intended. Further, the remaining variation is captured by
the cell-type-specific decomposed expression profiles (prc < 2

�10�8; see Fig. 3b), suggesting that the signal passing through to the
decomposed cell types is both a significant explanatory factor and
that it well captures the sample specificity of the original composite
bulk sample.

We also verified that the cell-type specificity of expression pat-
terns is not limited to individual genes, but is reflected in pathway
activity estimates as well. We derived gene set enrichment analysis
(GSEA) scores (Subramanian et al., 2005) for the NCI Pathway
Interaction Database (NCI-PID) (Schaefer et al., 2009) pathways
(see Supplementary Material) from both the composite and decom-
posed data as shown in Supplementary Figure S8. While most of the
differential pathway scores appear to originate from cancer cells, a
significant effect is contributed by fibroblasts or immune cells de-
pending on the pathway. For example, the NOTCH, FOXM1 and
HIF1A pathway scores appear to originate from the cancer cells
(< 6% from other sources); RB1, PI3KCI and FANCONI from a
combination of cancer and immune cells (< 4%); FGF from cancer
and stroma (< 2%); and IL4 and IL23 mostly from immune cells
(< 3%), as shown in Figure 3c and Supplementary Figure S9.
Accordingly, the pathway scores using the decomposed profiles yield
higher GSEA scores, indicating that the decomposition allows per-
forming pathway analysis at a finer level of detail, by removing the
compositional variation and the nuisance cell components, as sug-
gested by Figure 3b. The results were confirmed in the TCGA ovar-
ian cancer dataset (The Cancer Genome Atlas Research Network,
2011) (see Supplementary Material).

3.4 Validation of the composition estimates
To verify that the composition is accurately estimated, we compared
the PRISM estimates with estimates derived from whole-genome
sequencing (WGS) data. Supplementary Figure S6a shows the correl-
ation with ASCAT (Van Loo et al., 2010) purity estimates from the
corresponding WGS data. The correlation is 77% (P-value plc <
7 � 10�17 for no linear correlation in a t-test). Further, we verified
that the composition can be accurately estimated in other datasets
and cancer types. Thus we applied PRISM on the TCGA ovarian
cancer (The Cancer Genome Atlas Research Network, 2011) bulk
RNA sequencing data using our single-cell data; and to the TCGA
skin cutaneous melanoma (The Cancer Genome Atlas Research
Network, 2015) bulk RNA sequencing data using the single-cell
data from Tirosh et al. (2016) and compared with the estimates
from TCGA clinical data (immunohistochemistry) (The Cancer
Genome Atlas Research Network, 2011, 2015), ABSOLUTE (Carter
et al., 2012) (whole-genome sequencing) and LUMP (Aran et al.,
2015) (methylation 450k array) from Aran et al. (2015) (see
Supplementary Material). Finally, we verified that comparable com-
position estimates are obtained by using a single-cell panel derived
from a different sequencing platform and when holding out the
matching patients (see Supplementary Figs S13 and S16 and
Supplementary Material).

3.5 Validation of cell-type specificity of expression

profiles
We performed RNA-ish experiments to verify that the PRISM
decomposed profiles are indeed expressed differentially in cancer,
stromal and immune cells. For this, we used three genes for each cell
type: TRIM29, PARD6B, KIF1A (cancer), C1R, COL1A2,
NAALADL2 (fibroblast), RNASE6, GPR34 and C3AR1 (immune).
The genes were selected to have high expression in the specific cell
type (Fig. 3) and a significant difference between the complete re-
sponse and progressive disease groups. The validation used samples

from seven HGSOC patients with matching bulk RNA-seq data,
and as show in Figure 4, all the nine genes, except for NAALADL2,
are highly expressed in the PRISM predicted cell type (pm < 10�8;
Fig. 4a versus Fig. 4b). The cell-type specificity in the RNA-ish ex-
periment is also visually apparent under the microscope (Fig. 4c).

3.6 Decomposed RNA profiles predict patient response
The PRISM analysis revealed several genes with expression level dif-
ferences between complete response and the progressive disease
patients groups. The most prominent are shown in Supplementary
Figure S7. Cancer specific genes TRIM29, PARD6B and KIF1A
were found to be upregulated in the progressive disease group, while
the fibroblast specific C1R, COL1A2 and NAALADL2, and im-
mune specific RNASE6, GPR34 and C3AR1 are downregulated in
the progressive group (pm < 7 � 10�8). In the RNA-ish data, the dif-
ference was significant for six genes (KIF1A, C1R, COL1A2,
RNASE6, GPR34 and C3AR1), for TRIM29 and PARD6B the
trend was opposite, and for NAALADL2 was inconclusive. The
trend of TRIM29 and PARD6B opposite to the general trend is due
to the seven patients being a counterexample with respect to the gen-
eral population: also the PRISM-derived expression the opposite
pattern (83% correlation, prc < 0:003) in these samples, while the
general trend is reproduced by the TCGA ovarian cancer (The
Cancer Genome Atlas Research Network, 2011) patients.

For KIF1A, C1R and GPR34, we divided the 214 bulk RNA
samples into the bottom 50% and top 50% groups by the expres-
sion level to predict the time to progression of the disease. As sug-
gested by the differences between the complete response and
progressive disease groups, we found that a high level of KIF1A in
the cancer cell specific profile and low levels of C1R and GPR34 in
the fibroblast and immune specific profiles, respectively, confer less
effective treatment and more rapid recurrence of the cancer. As
shown in Figure 5, this difference is not visible in the composite bulk
signal. We verified that a similar association exists in the decom-
posed TCGA ovarian cancer (The Cancer Genome Atlas Research
Network, 2011) data for KIF1A, C1R and GPR34 (P-value ph <
0:002 for equal hazards in a log-rank test) regarding overall patient
survival (see Supplementary Fig. S15). While the trend is also visible
in the composite bulk data for KIF1A (ph ¼ 0:0004), the results for
C1R (ph ¼ 0:2) and GPR34 (ph ¼ 0:08) are not. In general, the sur-
vival associations are more significant for the decomposed data for
the selected genes and at the whole-transcriptome scale in both ovar-
ian cancer and in skin cutaneous melanoma (see Supplementary Figs
S14 and S17 and Supplementary Material).

KIF1A, C1R and GPR34 have not been previously associated
with HGSOC survival. KIF1A overexpression has been associated
with cancer tissue in endometrial cancer (Wong et al., 2007) and it
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Fig. 4. Validation of cell-type-specific expression patterns. (a) Predicted expression

level (scaled to match the RNA-ish experiment) from the decomposed bulk RNA

samples grouped by the cell type for the seven matching samples seven patients for

TRIM29, PARD6B, KIF1A [cancer (EOC)], C1R, COL1A2, NAALADL2 (fibro-

blast), RNASE6, GPR34, C3AR1 (immune). The box denotes first to third quartile,

white bar median and whiskers all data. Dots represent the samples, jittered by their

rank. (b) The corresponding quantified fluorescence from RNA-ish measurements.

(c) A region from the RNA-ish imaging, with split channels and our segmentation,

exemplifying the cell-type specificity of the genes
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confers docetaxel resistance in breast cancer cell lines (De et al.,
2009). Peptidase S1 protein family genes, such as C1R, are often
expressed in the stroma and endothelium of various malignant
tumors (Bulla et al., 2015; Reis et al., 2018), and are associated with
innate immune response activation, inducing phagocytosis, among
various functions (Markiewski and Lambris, 2009; Reis et al.,
2018). GPR34 is expressed primarily in specific immune cells
(Schoneberg et al., 2018) and is required for adequate immune re-
sponse in mice (Liebscher et al., 2011); it has been shown to be dif-
ferentially expressed to the non-cancerous tissue in at least six
different cancer types (Schoneberg et al., 2018). The expression dif-
ferences of these genes and their relevant function in other cancers
warrants further study of these genes as prognostic and/or thera-
peutic targets.

Several studies have reported gene expression signatures in
HGSOC and other cancers. As these are predominantly derived
from bulk RNA-seq data, we tested their robustness in PRISM
decomposed profiles. We derived HGSOC subtype estimates using
the CLOVAR method (Verhaak et al., 2013), which classifies the
samples into differentiated (DIF), immunoreactive (IMR), mesen-
chymal (MES) or proliferative (PRO) subtypes from both the com-
posite and decomposed RNA profiles. Our results indicate that
within the HGSOC subtypes, the IMR subtype highly depends on
the immune cell frequency alone (77% correlation; see
Supplementary Fig. S10) and the MES subtype on fibroblasts (84%).
DIF and PRO subtypes appear to originate from cancer cells and are
more weakly correlated with the composition (prc > 0:5), suggesting
that these subtypes likely reflect phenotypic differences in the cancer
cells, unlike the IMM and MES subtypes. The results were consist-
ent between the our longitudinal and the TCGA ovarian cancer
datasets (cf. Supplementary Fig. S11).

In the TCGA dataset we found that deriving the subtypes in the
absence of fibroblast and immune signals yields a significantly better
separation in the overall survival (ph < 0:006) than from the com-
posite bulk data (ph ¼ 0:2), as shown in Figure 5. To exclude the
possibility that the gene expression signatures are unstable in
HGSOC only, we analyzed gene expression signatures in TCGA
skin cutaneous melanoma (The Cancer Genome Atlas Research
Network, 2015) dataset using the expression-derived subtypes (The
Cancer Genome Atlas Research Network, 2015). Here, the ‘im-
mune’ subclass reflects mostly immune cell frequency (77% correl-
ation, prc < 0:03; see Supplementary Fig. S12), while the MITF-low
and keratin subtypes represent likely phenotypic differences between

the cancer cells. Again, after removing the confounding immune
component and the compositional variation, the patient classifica-
tion predicts overall survival much better (ph ¼ 0:007 versus 0.02;
see Supplementary Fig. S12).

In general, our results indicate that some of the previously
reported cancer subtypes obtained by clustering composite expres-
sion data are explained by the sample composition variation alone.
This is in line with a previous report in head and neck cancer
(Puram et al., 2017). While the composition may be indicative of pa-
tient survival (e.g. high immune content tends to correlate with bet-
ter survival), our results show that the patient response and survival
can be more accurately predicted by subtyping the cell-type-specific
signals separately.

4 Conclusion

We developed a statistical framework, PRISM, for the analysis of
heterogeneous RNA mixtures, and showed how it can be exploited
for extracting the composition and the bulk-adapted whole-tran-
scriptome profiles for each constituent cell type from each individual
bulk RNA sample. By analyzing 214 longitudinal HGSOC samples,
we showed that the tumor composition varies systematically with
the treatment phase and the anatomical location, posing a challenge
in personalized transcriptomic analysis. We showed that these chal-
lenges can be overcome with PRISM, which accurately estimates
cell-type-specific expression profiles, which can serve as better pre-
dictors of patient response than bulk RNA-seq data. Importantly,
analysis of 308 TCGA ovarian cancer, and 474 TCGA skin cutane-
ous melanoma samples agreed with these findings, showing that
PRISM can adapt to both different cohorts and cancer types.

The main limitation of PRISM is that a heterogeneous sample of
single-cell data from each cell type involved is required for consist-
ent performance, which can be a problem if the reference and the
analysis datasets are stratified according to different criteria.
However, as we have shown, good performance can be expected
without matching data as long as the single-cell data is not inherent-
ly biased. This requires a single-cell reference that spans well the ex-
pression state-space of the bulk samples. Further, as a statistical
method, the expression profile estimates for infrequent cell types
can be inaccurate. While this permits unbiased comparison of the
frequent cancer (or aggregate stromal or immune) profiles, the data
might lack power for the comparison of specific infrequent subtypes
of stromal and immune cells separately. These points may warrant
further investigation, but we expect that the issues are mitigated in
the future as single-cell cataloging efforts move forward.

Precision oncology approach calls for methods that can exploit
general statistical patterns in a cohort of a heterogeneous disease,
but operate reliably at the individual patient level regardless of the
evolving disease state, and adapt to the specifics of that patient, to
which PRISM is a response regarding whole-transcriptome analysis
of bulk samples. We believe PRISM has direct applications in ana-
lyzing transcriptomic data from other diseases that stem from het-
erogeneous causes and sampling setting, such as other cancer types,
and that analysis methods for other genomic domains can benefit
from the insights of our approach.
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