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Intra-tumor heterogeneity in breast cancer
has limited impact on transcriptomic-based
molecular profiling
Govindasamy-Muralidharan Karthik1†, Mattias Rantalainen2†, Gustav Stålhammar1,3, John Lövrot1, Ikram Ullah1,
Amjad Alkodsi4, Ran Ma1, Lena Wedlund5, Johan Lindberg2, Jan Frisell6, Jonas Bergh1,7 and Johan Hartman1,5,8*

Abstract

Background: Transcriptomic profiling of breast tumors provides opportunity for subtyping and molecular-based
patient stratification. In diagnostic applications the specimen profiled should be representative of the expression
profile of the whole tumor and ideally capture properties of the most aggressive part of the tumor. However, breast
cancers commonly exhibit intra-tumor heterogeneity at molecular, genomic and in phenotypic level, which can
arise during tumor evolution. Currently it is not established to what extent a random sampling approach may
influence molecular breast cancer diagnostics.

Methods: In this study we applied RNA-sequencing to quantify gene expression in 43 pieces (2-5 pieces per tumor)
from 12 breast tumors (Cohort 1). We determined molecular subtype and transcriptomic grade for all tumor pieces
and analysed to what extent pieces originating from the same tumors are concordant or discordant with each other.
Additionally, we validated our finding in an independent cohort consisting of 19 pieces (2-6 pieces per tumor) from 6
breast tumors (Cohort 2) profiled using microarray technique. Exome sequencing was also performed on this cohort, to
investigate the extent of intra-tumor genomic heterogeneity versus the intra-tumor molecular subtype classifications.

Results: Molecular subtyping was consistent in 11 out of 12 tumors and transcriptomic grade assignments were consistent
in 11 out of 12 tumors as well. Molecular subtype predictions revealed consistent subtypes in four out of six patients in this
cohort 2. Interestingly, we observed extensive intra-tumor genomic heterogeneity in these tumor pieces but not in their
molecular subtype classifications.

Conclusions: Our results suggest that macroscopic intra-tumoral transcriptomic heterogeneity is limited and unlikely to
have an impact on molecular diagnostics for most patients.
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Background
Breast cancer incidence in the industrialised countries
has markedly increased during the last century but the
mortality rate remains unchanged, and it has even
decreased in some countries [1]. Modern adjuvant ther-
apy is the main reason for these improvements in out-
come and it is delivered based on the analysis of therapy

predictive biomarkers and risk factors such as age, stage
and histopathological grade. In the general diagnostic
workup, expression of the therapy predictive biomarkers,
such as estrogen receptor (ER), progesterone receptor
(PR) and Human epidermal growth factor receptor 2
(HER2), are analysed by routine immunohistochemistry
(IHC). Based on the statues of these therapy predictive
markers, informed clinical decisions are taken. Apart
from the traditional immunohistochemical analysis,
genome-wide transcriptional profiling has provided op-
portunity to classify breast cancers in to distinct molecu-
lar subtypes, which have been proven to have significant
prognostic value [2–5]. Various commercially available
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gene signature panels, such as Oncotype DX [6]
Prosigna® [7] and MammaPrint [8, 9] are currently avail-
able for prognostic purposes, which can predict therapy
response and the likelihood of cancer recurrence.
Recently, we have determined the histological grade of
breast cancer using the RNA-sequencing data from 275
breast cancer patients [10]. In that study, by using RNA
sequencing data, we managed to reclassify the transcrip-
tomic grade (TG) [11] for grade 2 tumors, which is a
clinically challenging group for making clinical decisions
regarding therapy [12]. Multiple other studies demon-
strated that combining molecular signatures with routine
histopathological grading can improve prognostic power
[12–15]. These data suggests that integration of gene
expression-based analysis along with the routine immu-
nohistochemical analysis will be the future in clinics for
making informed clinical decisions.
It is widely acknowledged that breast cancers exhibit

substantial intra-tumor heterogeneity [16–18]. In surgical
pathology, breast tumor grading is commonly performed
by Nottingham histological grade (NHG) criteria; taking
both tumor differentiation, mitosis and nuclear atypia into
account [19]. However, mitoses and atypia varies through-
out the tumor area, leading to inter-observer variability in
morphology assessment. Heterogeneity is also evident as
different growth patterns that can be observed within the
same primary tumor [20]. Several massive parallel sequen-
cing studies have demonstrated that both spatial and tem-
poral genomic heterogeneity are common features of
breast cancer [21–24]. Hence, it is postulated that a biopsy
from one topographic region of the tumor may have
different gene expression profile compared to another
region, which can potentially affect the utility of gene
expression based molecular profiling in pathology
laboratories. For a reliable transcription based molecular
profiling, the methodology should be robust (irrespective
of the tumor region profiled) in representing the whole
tumor characteristics, and not be influenced by existing
intra-tumor heterogeneity.
It is unknown to what extent the therapy predictive

biomarkers and predicted molecular subtypes are
displaying intra-tumor heterogeneity at transcriptomic
level. The aim of this study was to investigate the tran-
scriptional heterogeneity in primary breast cancers.
Here, we have performed RNA-sequencing on multiple
tumor regions of 12 primary breast cancers (43 tumor
pieces). We determined the molecular subtypes and
transcriptomic grade (TG) of all the tumor regions pro-
filed. Furthermore, gene expression and IHC statuses of
therapy predictive factors (ER, PR and HER2) were also
investigated in these samples. These results were further
validated in an independent cohort consisting of 19
tumor pieces from 6 breast cancers using microarray
technology. Additionally, we also performed exome

sequencing on these 19 tumor pieces to investigate
intra-tumor genomic heterogeneity.

Methods
Patient material
During 2015, material from 12 breast cancer patients
(Cohort 1) were prospectively collected at Karolinska
University Hospital. From each one of these patients at
least two spatially separated tumor pieces were collected
and snap-frozen. In total, 43 pieces were collected (2-6
pieces per tumor). The additional retrospective valid-
ation data set, referred to as “Cohort 2” consisted of 15
breast tumors, out of which 6 tumors had multiple
tumor pieces (19 tumor pieces in total, 2-6 pieces per
tumor). The patients were identified through searches in
the laboratory information system (FlexLab/Sympathy®,
Tieto, Sweden) using the digitalized patient medical
records between 2000 and 2011. For each of these
patients, we collected formalin-fixed paraffin-embedded
(FFPE) material from primary breast tumors. From the
majority of primary tumors, multiple tumor areas of
different topography were isolated (>5 mm distance
from each other) resulting in 19 tumor pieces from 6 pa-
tient samples. These studies have been approved by the
Regional Ethical Review Board in Stockholm (Regionala
etikprövningsnämnden i Stockholm). All participants in
the prospective study signed informed consent allowing
for molecular profiling.

RNA-sequencing and data analysis
RNA was extracted from fresh frozen tumors using All-
Prep DNA/RNA/Protein mini kit (Qiagen). One μg of
total RNA was used for rRNA depletion using RiboZero
(Illumina) and stranded RNAseq libraries were con-
structed using TruSeq Stranded Total RNA Library Prep
Kit (Illumina). RNAseq libraries to a median of 33 mil-
lion read-pairs per library (paired-end 2 × 101 bases, Illu-
mina HiSeq 2500). The detailed protocol has been
published previously [10]. Pre-processing was performed
using AutoSeq (https://github.com/ClinSeq/autoseq),
using the same pre-processing procedure as described
previously [10]. In brief, standard Illumina adapters were
trimmed using skewer version 0.1.117 [25] with default
parameters. Alignment was carried out using STAR
aligner version 2.4.0e [26] and gene expression estimates
were calculated with HTSeq count version 0.6.1 [27].
The RNAseq count data were normalised using the
TMM method [28] in the edgeR package [29]. Molecular
subtype, based on the PAM50 gene set [3], and tran-
scriptomic grade were predicted from the RNA-
sequencing data as described previously [10, 11]. ER, PR
and HER2 status was assigned using a logistic regression
model with the corresponding gene as predictor [10].
Principal Component Analysis (PCA) was applied using
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the PAM50 gene set [3] after mean centering of the vari-
ables. All statistical analyses were carried out in the R
environment [30].

IHC assessments and pathology characterisation
The whole tumor paraffin blocks were cut into 4 μm
sections and immunohistochemically stained for ER, PR,
HER2 and Ki-67. FFPE sections were conditioned in
CC1 solution (Ventana Medical Systems, Tucson, AZ,
USA) for 36 min (Ki67) to 64 min (PR) and incubated
with mouse monoclonal antibodies for Ki67 (clone 30-9)
and rabbit monoclonal primary antibodies for ER (clone
SP1), PR (clone 1E2), and HER2 (clone 4B5) at 35 °C
(HER2, all antibodies from Roche/Ventana Medical
Systems, Tucson, AZ, USA) or 37 °C (others) for 16 min
(Ki67) to 44 min (ER) according to the manufacturer’s
instructions (Ventana, USA), and finally counterstained
with hematoxylin. Board certified pathologist at Karolinska
University Hospital determined the heterogeneity (differ-
ence in percentage of positive cells for the biomarker in
different regions of the tumor) of ER, PR, HER2 and Ki-67
on whole tumor sections.

Microarray and PAM50 molecular subtyping after
subgroup-specific gene-centering
For validation purpose, we investigated 19 tumor pieces
from six additional patients (Cohort 2, 2-6 pieces per
tumor) and profiled them using microarray technology.
RNA was extracted from two 10 μM sections per FFPE
tumor block (19 tumor pieces from 6 breast cancer
patients) using RNeasy FFPE Kit (Qiagen, CA, USA)
according to manufacturer’s instructions. SensationPlus™
FFPE Amplification kit (Affymetrix, Santa Clara, CA,
USA) was used to amplify the RNA and profiled in Gene-
Chip® Human Transcriptome Array 2.0 (Affymetrix, Santa
Clara, CA, USA). Probe intensities were extracted from
CEL files and background corrected, normalized and
summarized for probe set expression using Affymetrix
Expression Console Software. PAM50 molecular subtyping
[3] of each tumor sample was performed after subgroup-
specific gene-centering [31]. The population based
Stockholm cohort with primary breast cancer patients [32]
(GEO:GSE1456) was used as training cohort. The subgroup
of patients with breast cancer relapse within the first 5 years
was used to mimic this cohort. All molecular subtype ana-
lysis was done in R/Bioconductor.

Exome sequencing and data analysis
We isolated cancer DNA from eight 10 μM sections of
FFPE tissues using a QIAamp DNA FFPE Tissue Kit
(Qiagen, CA, USA). We used DNA from normal axillary
lymph nodes FFPE tissues as Germline controls. In all
cases, we followed the manufacturer’s recommended
protocol. Genomic target capture was performed using

the SureSelectXT2 Human All Exon V5 kit (Agilent
Technologies, Santa Clara, CA, USA) and captured li-
braries were whole exome sequenced on an Illumina
HiSeq 2500 Instrument (Illumina, San Diego, CA, USA)
using 2 × 100 bp sequencing reads. Raw sequencing
reads were quality and adapter trimmed with trim
galore. The trimmed reads were aligned to the reference
human genome (hg19) using bwa-mem. Aligned reads
were sorted and marked for duplicates with Picard. Next,
base quality recalibration and realignment around indels
were performed using the Genome Analysis ToolKit
(GATK). The achieved coverage in target regions was on
average 80× (70% targeted regions with >30× coverage).
All preprocessing and downstream analyses were
performed within the Anduril framework for scientific
data analysis [33]. We performed point mutation calling
using MuTect (50). Then, to account for potential arti-
facts induced by formalin-fixed paraffin embedded
(FFPE) samples, we filtered C > T/G > A mutations that
are private to one sample and having variant allele fre-
quency (VAF) less than 0.15. To rescue potential real
mutations, we excluded, from these criteria, the variants
that are reported in the COSMIC database (version 68)
and variants with at least two reads supporting the vari-
ant allele in each strand. Second, we filtered shared vari-
ants that have VAF < 0.15 if the respective control
sample has any number of reads supporting the variant
allele. Absolute estimation of copy number alterations
was performed with AscatNgs (52), which allows the
estimation of ploidy and purity values for each sample
(52). Genes were assigned the copy number of the most
overlapping segment. Genes were called amplified if the
assigned absolute copy number was larger than average
ploidy multiplied by 1.5, and were call deleted if the
assigned absolute copy number was less than the average
sample ploidy multiplied by 0.5.

Intra-tumor genomic heterogeneity analysis
We used variant allele frequency (VAF) of a set of 361
putative driver genes in breast cancer compiled by Yates
et al. (16), derived from exome sequencing data to dem-
onstrate intra-tumor genomic heterogeneity in the pri-
mary tumor. Before comparing VAFs of these genes
across different primary blocks in a patient, we
accounted for tumor purity by dividing the VAFs by
corresponding purity of the tumor block. Genomic
heterogeneity plots were plotted in R using ggplot2
package. We used PyClone (25) for analyzing the subclo-
nal population structure. PyClone is based on a Bayesian
clustering method, which uses a Markov chain Monte
Carlo (MCMC) based framework to estimate cellular
prevalence values using somatic substitution, copy
number aberration and tumor purity data (estimated
using AscatNGS). We used the authors’ recommended
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genotype-aware PyClone-beta-binomial model with all
model parameters set to recommended values (the rest
of the two models are genotype-naive infinite binomial
mixture model and infinite beta-binomial mixture
model). PyClone is implemented in Python program-
ming language.
We used the following criteria for filtering out low-

occurrence clusters.

1. A cluster was considered only if it had 10 or more
mutations.

2. A cluster sc in a sample s was considered only if the
mean cellular prevalence of sc was greater than or
equal to 0.05, i.e., sc was present in at least 5% of the
cells in s.

Results
Intra-tumor molecular subtype heterogeneity based on
RNA-sequencing data
The potential effect of intra tumor heterogeneity on
molecular diagnostics was assessed in a set of 43 tumor
pieces from 12 breast tumors (Cohort 1) (Fig. 1a). The
routine clinicopathological data on NHG, ER, PR, HER2
and Ki-67 statuses for these 12 breast tumors are illustrated
in Fig. 1b. Based on IHC, ten tumors were ER-positive/
HER2-negative or positive, one tumor was HER2-positive
and one tumor was triple negative (Fig. 1b). RNA-
sequencing data was acquired, pre-processed and molecular
subtype was predicted for each tumor piece (Fig. 2a).
Consistent molecular subtypes were predicted across all
pieces in 11 out of 12 tumors. In one patient (CS-BC-
00059) however, one tumor piece was assigned to Luminal
A, while the other tumor piece was assigned to Luminal B
subtype (Fig. 2b). Based on molecular subtype analysis, our
cohort consisted of 11 luminal (A/B) tumors and one
basal-like tumor (Fig. 2b). We also note that in 2 patients
(CS-BC-00257 and CS-BC-00083) we report discordance
between IHC based subtypes and intrinsic molecular sub-
types based on RNA-sequencing data. A HER2 positive
tumor was classified as Basal-like subtype (CS-BC-00257)
and a triple negative tumor was assigned to luminal type
based on RNA sequencing data. HER2 positive individuals
would generally be expected to fall into the HER2-enriched
molecular subtype, however, HER2 positive samples classi-
fied as Basal-like has previously been reported [3], and we
note that this particular tumor is also located in the border
between basal-like and HER2-enriched subtypes in the
PCA score plot (Fig. 2a). Similarly, in the PCA score plot
(Fig. 2a), CS-BC-00083 is located on the border of the
‘luminal’ area (top left), and close to the HER2/Basal corner
(top right). The classification model for subtype also take
into account a larger gene-panel (PAM50) and not only ER,
PR and HER2 statuses hence, the multivariate expression

profile in this case, indicate that this tumour had the high-
est probability of belonging to the luminal subtype.

Intra-tumor heterogeneity in transcriptomic grade
Transcriptomic grade (TG) is a reproducible method to
divide primary breast tumors into high and low grade
based on gene expression and thereby eliminate classifi-
cation of tumors as intermediate-grade. TG assignments
were consistent in 11 out of 12 tumors (Fig. 2b). We
found minor intra-tumor differences in one patient out
of 12 in respect to transcriptomic grade. In one patient
(CS-BS-00141) two tumor specimens had high transcrip-
tomic grade, and other two pieces had low grade. These
results suggest that spatial heterogeneity may only have
a minor impact on transcription based molecular diag-
nostics for most patients.

Intra-tumor heterogeneity in biomarker expression
Gene expression levels of ESR1 (ER), PGR (PR), ERBB2
(HER2) and MKI67 (Ki-67) were assessed within the
tumors across the spatially sampled pieces (Fig. 3a-d).
ESR1 (ER), PGR (PR), ERBB2 (HER2) gene expression

b

a

Fig. 1 Multi-region RNA sequencing profiling cohort. a Bar graph
illustrating the number of intra–tumor pieces analysed per breast
tumor from 12 breast cancer patients. b The clinicopathological
characteristics Nottingham grade (NHG), ER, PR, HER2 and Ki-67
status of the cohort. The values correspond to the percentage of
positively stained tumor cells
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values tended to be homogeneous across different tumor
regions, while MKI67 mRNA levels are slightly varying
between regions. Interestingly, the patient (CS-BS-
00141) in which two tumor specimens with high tran-
scriptomic grade, and two other tumor pieces had low
transcriptomic grade, exhibited intra-tumor variability
only in MKI67 expression but not in ER, PR or HER2
gene expression values (Fig. 3d). Intra-tumor variability
was smaller than inter-tumor variability, and pieces from
the same tumor were found to be similar on a molecular
level for these biomarkers. Although we observed homo-
geneous mRNA levels across different regions of the
same tumor, the corresponding biomarker protein (IHC
based) expression (i.e. Ki-67 for MKI67) were more

heterogeneous across spatially separated tumors (verified
by board certified pathologist L.W) (Fig. 3e). PR and Ki-
67 expression tended to be more spatially heterogeneous
compared to ER and HER2 (Additional file 1: Figure S1).
Similar findings have been reported by us and others
before [34–36].

Genomic intra-tumor heterogeneity versus molecular sub-
type intra-tumor heterogeneity
In order to validate our previous RNA sequencing based
molecular profiling, we investigated 19 tumor pieces
from six additional patients (2-6 pieces per tumor) and
profiled them using microarray technology (Fig. 4a).
Molecular subtype classification was assigned to all the

a

b

Fig. 2 Intra-tumor molecular subtype heterogeneity (n= 12 tumors). a PCA score plot of the prospective study (points) and the heterogeneity set (points
connected by lines for pieces from the same tumor) (Key: LumA= Luminal A (red colour dots), LumB = Luminal B (blue colour dots), HER2 = HER2-
enriched (green colour dots), Basal = Basal-like (purple colour dots) and Normal = Normal breast-like (orange colour)). Intra-tumor pieces from each patient
are connected through respective coloured lines as illustrated in the figure legend. b Predicted ER status, HER2 status, transcriptomic grade and molecular
subtypes for all the tumor pieces (n= 43) are summarised in a table format. Two patient IDs are coloured in red fonts, are the ones which exhibited
heterogeneous molecular subtypes or transcriptomic grades
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tumor pieces. Analogously to the RNA-sequencing data-
set, the molecular subtype remained consistent for four
out of six patients when investigated across intra-tumor
pieces (Fig. 4b). Two patients (patient 5 and 17) had het-
erogeneously classified intrinsic subtypes on spatially
separated tumor samples. Patient 5 consisted of two
tumor pieces, one was assigned to Luminal B and the
other one to HER2-enriched subtype, while tumor pieces
from patient 17 where assigned to Luminal A and
Luminal B (Fig. 4b). Within each tumor, the expression
levels of ER, PR and HER2 were more or less
homogenous throughout the different regions. However

MKI67 gene expression value tended to be more hetero-
geneous within spatially separated intratumor regions,
similar to the RNA sequencing data (Fig. 4c).
Next, we sought to investigate if intra-tumor genomic

heterogeneity is common among the cases where we
observed consistent molecular subtype across spatially
separated tumor specimens. For this analysis, multiple
regions from the six breast cancers were profiled using
whole exome sequencing. We used a set of putative
driver genes in breast cancer compiled by Yates et al.
[37] to study intra-tumor genomic heterogeneity. In each
case, we compared the driver genes, which are mutated,
among different pieces from the same tumor. We
observed substantial intra-tumor genomic heterogeneity
in all the six patients (Fig. 5 and Additional file 2: Figure
S2). For instance, intra-tumor genomic heterogeneity in
patient 4, patient 11 and 18 are represented in Fig. 5 a-f.
For these three patients we investigated 5, 4 and 2 tumor
pieces per tumor respectively, and all the three patients
retained intrinsic molecular subtype across different re-
gions (Patient 4:HER2-enriched subtype, patient 11
basal-like and patient 18 Luminal B). In patient 4 (5
intra-tumor pieces), PBRM and KDM6A genes were mu-
tated only in tumor piece 1 and 4 respectively but not in
any of the other five tumor pieces. Further, DNMT3A
gene was mutated in all tumor pieces except tumor
piece 4 (Fig. 5a). Similarly, in patient 11, BRCA1 was
mutated only in piece 3 but not in any of the other four
pieces. Few other genes such as MAP3K13 and JAK2
was found to be mutated only in certain tumor pieces
(Fig. 5b). In patient 18, FGFR2 was mutated online in
region 2 and MAP2K1 gene was mutated only in region
1. Few other genes such as PTEN and P1K3R1 were also
found to be present only in one region but not the other
one (Fig. 5c). (Putative driver gene mutational differences
for rest of the patients are illustrated in Additional file 2:
Figure S2).
Apart from the mutational difference, subclonal ana-

lysis also identified variable contribution of tumor-
related subclones in different regions in these patients.
For instance, in patient 4 (Fig. 5d), out of 9 inferred sub-
clones across six tumor pieces, subclone 1 (39 genes),
subclone 3 (26 genes), subclone 5 (23 genes), and sub-
clone 6 (29 genes) were present only in tumor piece 1, 2,
6, and 4 respectively. Subclone 15 (14 genes) was present
in all tumor pieces except in tumor piece 1. Similarly in
Patient 11 (Fig. 5e), six different subclones has been
inferred from 5 different regions of the tumor. Subclone
14 (309 genes) was present in tumor piece 3 and 4 but
not in other three tumor pieces. In patient 18 (Fig. 5f ),
four subclones were inferred from two different regions
of the tumor, Subclone 15 (33 genes) was found to be
present only in region 1, while subclone 12 (228 genes)
was present in region 2. Apart from detecting subclones

a

b

c

d

e

Fig. 3 Intra tumor transcriptomic variation of ER, PR, HER2 and MKI67.
mRNA expression levels of (a) ER (b) PR (c) HER2 and (d) MKI67 across
tumor pieces from 12 patients. e Heterogeneity assessment of whole
tumor section after immunohistochemical staining of the biomarkers
ER, PR HER2, Ki-67 and tumor growth patterns (morphology).
Assessments were performed by a board certified pathologist at
Karolinska University Laboratory (LW). Green blocks represents
homogeneous expression, while light brown colour indicates
heterogeneous expression pattern across the whole tumor
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being present or absent, we identified variable cellular
prevalence of existing subclones across different regions
of a tumor for all the six patients (Additional file 2:
Figure S2). Taken together, these results suggest that,
substantial intra-tumor genomic heterogeneity within
breast cancer is a common phenomenon, however, this
intra-tumor genetic heterogeneity does not affect the
molecular subtype classifications to a great extent.

Discussion
Spatial tumor heterogeneity impacts traditional immu-
nohistochemical analysis. Variations in ER, PR and
HER2 expression in spatially separated tumor samples
has been reported before and is sometimes associated
with heterogeneity in morphology [35, 38, 39]. Prolifera-
tion markers such as Ki-67 are also subjected to substan-
tial intra-tumor heterogeneity [36] with higher expression
in certain hot-spots and in the tumor invasive margins

[34]. Determining the tumor grade and molecular subtype
by IHC surrogate classification are highly sensitive to the
cut-off of the Ki-67 score and the region of the tumor
investigated [40, 41]. Further, inter-individual variability
between pathologists also accounts for misclassification of
tumors [42, 43]. Therefore, next generation technologies
such as automatic image processing technology, gene
expression based molecular profiling and genetic testing
are considered as the future of cancer diagnostics. In order
to translate such technologies to the clinic, they should be
sufficiently robust and consistent in providing therapy
predictive and prognostic information without being
affected by typical levels of intra-tumor heterogeneity.
In this study we focused on assessing if the sampling

procedure, i.e. which part of the tumor to profile by RNA-
sequencing, would have an impact on transcription-based
molecular breast cancer diagnostics. RNA-sequencing
based transcriptomic profiling of multiple pieces from the
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same tumors (n = 12, Cohort 1) revealed minor intra-
tumor differences. Only one patient (CS-BC-00059)
exhibited heterogeneous molecular subtype and one
patient (CS-BS-00141) demonstrated heterogeneous tran-
scriptomic grade scores in a cohort of 12 breast tumors.
In both the patients, ER, PR and HER2 expression
remained homogenous across tumor pieces, while, MKI67
expression varied in spatially separated tumor pieces. We
observed similar findings in all the 12 patients, where
MKI67 tend to be more intra-tumoral heterogeneous

compared to ER, PR and HER2. This suggests that prolif-
eration markers such as MKI67 are crucial factor that
influence molecular subtype and transcriptomic grade het-
erogeneity. On the other hand, protein expression of ER,
PR, HER2 and Ki-67 exhibited more spatial heterogeneity
than mRNA levels. In our study, we observed that, PR and
Ki-67 protein levels tend to be more heterogeneous than
ER and HER2 protein expression. Further, we applied
microarray-based gene expression profiling in an inde-
pendent cohort (Cohort 2), which consisted of multiple
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regions from six primary breast tumors (19 pieces in total)
to validate the molecular subtype homogeneity between
intra-tumor pieces. We assigned molecular subtypes to
each region and found that molecular subtypes were
consistent between tumor pieces in four out of six
patients. In two patients (patient 5 and 17) however, we
observed heterogeneous molecular subtypes between two
pieces of the same tumor. Similar to previous cohort,
MKI67 expression tends to me more heterogeneous across
intra-tumor pieces than ER, PR and HER2 expression.
It has been well established that substantial intra-

tumor genomic differences are common in breast cancer
[21, 22, 37]. In our cohort, we observed intra-tumor
genomic heterogeneity in all the six patients. However,
we observed homogeneous molecular subtype between
intra-tumor pieces. Our subclonal analysis also revealed
that certain subclones are only present in certain parts
of the tumor. However, their cellular prevalence is much
lower compared to the dominant clones of the tumor. It
is possible for small subclones within the tumor to have
radically different molecular make up when compared to
the rest of tumor bulk. However, current clinical prac-
tices are mostly administrated based on the molecular
characteristics of the entire tumor, while there is a risk
of a future recurrence due to expansion of the minor
(undetected) subclone during cancer progression. For
instance, we and others have previously reported that the
expression of prognostic and therapy-predictive bio-
markers were altered in metastasis compared to their
respective primary tumors, this might be due to the
undetected subclone in primary tumors which could have
expanded in metastasis during tumor evolution [44, 45].
There are multiple limitations in our study, primarily

the sample size, uneven molecular subtype distribution
among the samples and lack of relative spatial informa-
tion (physical distance measurements) between regions
analysed within each tumor. It might well be that for
some smaller proportion of patients; intra-tumor hetero-
geneity may be of importance, while substantially larger
studies would be required to establish if this is the case,
particularly if the proportion of tumor with large intra-
tumor heterogeneity is small. In this study the number
of regions analysed within each tumor depends on the
initial size of the whole tumor, and the resolution of the
intra-tumor heterogeneity is characterised on a macro-
scopic scale rather than a microscopic scale. The appli-
cation of e.g. single-cell gene expression profiling or
similar technologies could potentially be applied in fu-
ture studies to characterise intra-tumor heterogeneity at
a higher resolution. Further, we could not determine the
protein expression, using e.g. IHC, of therapeutic pre-
dictive markers (ER, PR, and HER2) from the same
regions of tumor pieces that were used for RNA-
sequencing. However, previous studies have reported

substantial protein expression heterogeneity within the
breast tumors [35].

Conclusions
In summary, this study demonstrates that the average
expression profile collected from any part of the breast
tumor in most cases is representative for the entire
tumor, at least with respect to transcriptomic grade and
molecular subtype. Further, the variability introduced by
random sampling of material from the tumor is not
expected to have a major impact for most patients, even
though these intra-tumor pieces demonstrates substan-
tial spatial genomic heterogeneity.

Additional files

Additional file 1: Figure S1. Representative immunohistochemical
staining (IHC) images of heterogeneous expression patterns of (a) ER (b)
PR (c) HER2 and (d) Ki-67 in two patients. Scale bar = 200 μm. Regions
with higher protein expression are marked with red arrows and regions
with lower protein staining are marked in green arrows. (PDF 568 kb)

Additional file 2: Figure S2. Variant allele frequency values for putative
driver genes across different regions profiled from (a) patient 15 (b)
patient 10 and (c) patient 17. Cellular prevalence values for inferred
subclones (clusters) across different regions profiled in (d) patient 5 (e)
patient 10 and (f) patient 17. (PDF 1153 kb)
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