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MicroRNAs regulate key cell survival
pathways and mediate chemosensitivity
during progression of diffuse large B-cell
lymphoma
Suvi-Katri Leivonen1,2, Katherine Icay1, Kirsi Jäntti1,2, Ilari Siren1,2, Chengyu Liu1, Amjad Alkodsi1, Alejandra Cervera1,
Maja Ludvigsen3,4, Stephen Jacques Hamilton-Dutoit5, Francesco d’Amore4, Marja-Liisa Karjalainen-Lindsberg6,
Jan Delabie7, Harald Holte8, Rainer Lehtonen1, Sampsa Hautaniemi1 and Sirpa Leppä 1,2

Abstract
Despite better therapeutic options and improved survival of diffuse large B-cell lymphoma (DLBCL), 30–40% of the
patients experience relapse or have primary refractory disease with a dismal prognosis. To identify biological correlates
for treatment resistance, we profiled microRNAs (miRNAs) of matched primary and relapsed DLBCL by next-generation
sequencing. Altogether 492 miRNAs were expressed in the DLBCL samples. Thirteen miRNAs showed significant
differential expression between primary and relapse specimen pairs. Integration of the differentially expressed miRNAs
with matched mRNA expression profiles identified highly anti-correlated, putative targets, which were significantly
enriched in cancer-associated pathways, including phosphatidylinositol (PI)), mitogen-activated protein kinase (MAPK),
and B-cell receptor (BCR) signaling. Expression data suggested activation of these pathways during disease
progression, and functional analyses validated that miR-370-3p, miR-381-3p, and miR-409-3p downregulate genes on
the PI, MAPK, and BCR signaling pathways, and enhance chemosensitivity of DLBCL cells in vitro. High expression of
selected target genes, that is, PIP5K1 and IMPA1, was found to be associated with poor survival in two independent
cohorts of chemoimmunotherapy-treated patients (n = 92 and n = 233). Taken together, our results demonstrate that
differentially expressed miRNAs contribute to disease progression by regulating key cell survival pathways and by
mediating chemosensitivity, thus representing potential novel therapeutic targets.

Background
Diffuse large B-cell lymphoma (DLBCL) is the most

common lymphoid malignancy in adults. It is a hetero-
geneous disease, which can be classified into activated
B-cell, germinal center B-cell (GCB), and primary med-
iastinal B-cell subtypes according to gene expression
profiling1–4. The standard therapy for DLBCL is a

combination of CD20 antibody rituximab with cyclopho-
sphamide, doxorubicin, vincristine, and prednisone (R-
CHOP)5, 6. Despite the efficacy of this regimen, approxi-
mately one-third of the patients have primary refractory
disease or relapse, which remains a major cause of mor-
bidity and mortality. However, molecular mechanisms
behind the treatment failure remain largely unknown.
MicroRNAs (miRNAs) participate in several biological

processes by regulating gene expression at the post-
transcriptional level. These short non-coding RNAs (20-
to 22-nucleotides) bind to complementary sites in their
target gene mRNAs, thereby inhibiting translation or
inducing destabilization and degradation of the target
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mRNAs7. Moreover, dysregulation of miRNAs has been
linked to the development and progression of a number of
human cancers, making them ideal candidates for both
predictive and prognostic biomarkers8, 9.
Recently, an 8-miRNA classifier was reported to distin-

guish among DLBCL molecular subgroups10. MiRNA
signatures can also identify specific tumor drug resistances
or drug sensitivities, and predict clinical outcome in
DLBCL patients treated with chemoimmunotherapy10–12.
A comprehensive profiling of the DLBCL miRNome
identified miRNAs associated with patient survival inde-
pendently of established indicators of outcome13. MiR-
NAs, such as miR-155, miR-21, and members of the
miR-17-92 cluster have been demonstrated to drive lym-
phomagenesis in miRNA mouse models14–18, while the
miR-34 family represents a tumor suppressor in DLBCL19.
However, so far, the potential regulatory role of miRNAs
in DLBCL progression has not been explored.
Here, we have performed miRNA and mRNA profiling

of matched primary and relapsed DLBCLs. Our work
establishes a landscape of miRNA expression in poor
prognosis DLBCL, and highlights regulatory roles for
miRNAs in signaling pathways contributing to disease
progression and poor survival.

Methods
Patient samples
The discovery cohort consisted of matched primary-

relapse sample pairs from seven DLBCL patients (Sup-
plementary Table 1). The patient selection was based on
availability of fresh frozen tissue containing adequate
material for RNA extraction and next-generation
sequencing (NGS). The patients were 62–76 years old
and had a primary, high-risk (age-adjusted International
Prognostic Index (aaIPI) score 2–3) disease. They had
received chemoimmunotherapy (R-CHOP or R-CHOEP),
but relapsed between 4 to 62 months after the treatment.
The validation cohort consisted of 13 primary-relapse

sample pairs from formalin-fixed paraffin-embedded tis-
sue containing adequate material for RNA extraction for
real-time reverse transcription PCR (qRT-PCR) (Supple-
mentary Table 1). The patients were 44–81 years old and
had a primary, high-risk disease. They had received che-
moimmunotherapy (R-CHOP or R-CHOEP), but relapsed
between 4 to 157 months after the treatment.
The study was approved by the National Authority for

Medicolegal Affairs, Finland, and Institutional ReviewBoards,
and Ethics Committees in Helsinki, Finland, Aarhus, Den-
mark and Oslo, Norway. All patients gave informed consent.

Next-generation sequencing and data analysis
RNAs from seven primary-relapse DLBCL sample pairs

(Supplementary Table 1) were subjected to NGS.
Expression quantification was performed for all but one

relapse sample (DLBCL1_R), which was filtered out dur-
ing quality control. TruSeq small RNA sample prepara-
tion kit (Illumina, Inc. CA, USA) was used for library
construction according to manufacturer’s protocol.
Cluster generation and sequencing were performed on the
Illumina HiSeqTM 2000 platform by Beijing Genomics
Institute (Beijing, China), with average read depth of ~ 30
M per sample. More details on data analysis are provided
in the Supplementary methods. The NGS data have been
submitted to the Gene Expression Omnibus (GEO)
database with accession number GSE69810.

miRNA−mRNA transcript target pair analysis
We identified highly anti-correlated (Spearman rho<

−0.7, p< 0.05) transcript expression across the samples
for each miRNA. Anti-correlated miRNA−mRNA pairs
were then filtered for support by at least one of the
selected target database resources (TargetScan Human
v.5.220, DIANA microT v.1821, Microcosm v.522, PITA
v.523, and a manually curated mirTarbase v.4.524). The
miRNA-target gene pairs then proceeded to gene ontol-
ogy (GO) and KEGG pathway enrichment analysis.

Real-time reverse transcription PCR (qRT-PCR) analysis
MiRNA expression was analyzed with the miRCURY

LNA™ Universal RT microRNA PCR system (Exiqon,
Vedbaek, Denmark) using 100 ng RNA as starting mate-
rial. Relative expression was determined by the 2−ΔΔC

T

method25 with 5S RNA as an endogenous control. The
samples were run at least twice in triplicates.
For determining the target gene mRNA expression, 1 µg

total RNA was reverse transcribed with iScript cDNA
synthesis kit (Bio-Rad Laboratories Inc., Hercules, CA, USA).
Subsequently, the cDNAs were diluted 1/10 and subjected to
Taqman Fast qPCR with Gene Expression Assays from
Applied Biosystems. Relative expression was determined by
the 2−ΔΔC

T method25 using GAPDH as an endogenous
control. The samples were run three times with triplicates.

Survival analyses and statistics
For survival analyses, data from the Cancer Genome

Characterization Initiative (CGCI) (n= 92) (the database
of Genotypes and Phenotypes study accession: phs000532.
v2.p1)26, 27 and the Lymphoma/Leukemia Molecular
Profiling Project (LLMPP) (n= 233) (GEO accession:
GSE10846)2 were used. CGCI level 1 RNA-seq data were
downloaded and processed with SePIA transcriptomics
analysis pipeline28. A web-based cutoff finder tool (http://
molpath.charite.de/cutoffanalysis) was used to determine
the most prognostic cutoff level for survival outcomes29.
Kaplan−Meier plots were created with SPSS 22.0 (IBM,
Armonk, NY, USA) and log-rank test was used for cal-
culating the significance. Overall survival (OS) was
determined from the date of diagnosis until last follow-up
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or death from any cause. Progression-free survival (PFS)
was measured as the period between the date of diagnosis
and progression or death from any cause. Multivariate
analyses were performed according to the Cox propor-
tional hazards regression model using categorical data.
p-values< 0.05 were considered significant and all
p-values were two-sided.

Cell culture and lentiviral transductions
SU-DHL-4 cells were from Deutsche Sammlung von

Microorganismen und Zellkulturen GmbH (DSMZ) and
they were cultured in RPMI 1640 Medium (Corning Life
Sciences, Tewksbury, MA, USA) in the presence of 10%
fetal bovine serum, 2 mM L-glutamine and 1% penicillin/
streptomycin. The cells were tested and authenticated by
Short Tandem Repeat profiling and checked for myco-
plasma infections regularly using the MycoAlert™
Mycoplasma Detection Kit (Lonza, Basel, Switzerland).
The human shMIMIC lentiviral vectors for miR-370-3p,

miR-381-3p, and miR-409-3p were obtained from GE
Dharmacon (Lafayette, CO). SmartVector shMIMIC non-
targeting Control 1 (Co1) and Control 10 (Co10) were
used as negative controls. The lentiviral vectors had hEF1
promoter and expressed turboGFP. SU-DHL-4 cells were
transduced with the lentiviral vectors and incubated for
three days. Thereafter, the cells were subjected for pur-
omycin (1 µg/ml) selection to create stable cell lines. The
GFP and miRNA expression of the cell lines was con-
firmed by microscopy and qRT-PCR, respectively.

Cell viability assays
SU-DHL-4 cells stably expressing miR-370-3p, miR-381-

3p, and miR-409-3p as well as non-targeting control Co10
were plated on black, clear-bottom 96-well plates (25,000
cells/well). Rituximab (1 µg/ml) or doxorubicin (100 nM) was
added at the time of plating. The cells were incubated for 72 h,
and cell viability measured with CellTiter-Blue Cell Viability
assay (Promega, Madison, WI). The experiments were done
in triplicates and repeated for four times.

Results
MiRNA sequencing of primary and relapsed DLBCL
To uncover molecular mechanisms behind treatment

resistance and progression in DLBCL, we searched for
differentially expressed miRNA profiles between matched
primary and relapsed DLBCLs. The discovery cohort
consisted of seven DLBCL patients (Supplementary
Table 1). A total of 492 known miRNAs were detected in
the samples (Fig. 1a, b). Overall, the miRNA expression
profiles in the primary and relapse samples were quite
similar, suggesting that the miRNA expression remains
relatively constant during the disease progression
(Fig. 1a). Unsupervised clustering analysis of the miRNA

expression could not distinguish primary from relapsed
tumor samples (Fig. 1b).
We identified subsets of miRNAs with high (n= 24) and

low expression (n= 177) as compared to a reference set of
non-malignant B-cells (Fig. 1a; Supplementary Table 2).
Among the high-expressed miRNAs were members of the
miR-10 family, which has been demonstrated to have
oncogenic effects formany cancer cells30. In contrast, many
low-expressed miRNAs, including miR-129-5p31, 32, miR-
66333, 34, and miR-203a35, 36, are known from their tumor
suppressive roles. Further analysis revealed hypermethy-
lation in the promoter regions of these tumor-suppressive
miRNAs (Supplementary Fig. 1), suggesting methylation as
the cause for their downregulation in DLBCL.
The analysis revealed 13 miRNAs with differential

expression (p< 0.05) between primary and relapsed
samples. Five miRNAs had higher and eight had lower
expression in the relapse samples as compared to the
primary samples (Fig. 1c and Supplementary Table 3).

MiRNA−mRNA data integration reveals potential miRNA
target genes enriched in lymphoma-associated pathways
Given that miRNAs often regulate target gene expression

by inducing RNA degradation37, identification of negatively
correlated miRNA and mRNA transcript interactions pro-
vides functional insights to the oncogenic mechanisms of
miRNAs. Therefore, we correlated miRNA expression with
thatofmRNAsderived fromtotalRNA-sequencingdata, and
subsequently integrated these with miRNA target predic-
tions. For the high expressed miRNAs, the analysis resulted
in 243 miRNA-transcript pairs representing 186 individual
genes (Supplementary Table 4). GO enrichment analysis
showed these genes to be enriched for cell adhesion (not
shown). Altogether 5531 miRNA−mRNA transcript pairs
for the low expressed miRNAs were identified, and they
represented 3064 individual genes (Supplementary Table 5).
These genes were enriched for cancer-related pathways or
processes, such as KEGG-pathways in cancer, MAPK sig-
naling pathway, cell cycle and apoptosis (Supplementary
Table 6), suggesting that the low-expressedmiRNAs contain
tumor suppressive miRNAs, and their oncogenic targets are
over-expressed in the DLBCL.
The number of miRNA−mRNA pairs for the 13 dif-

ferentially expressed miRNAs was 1088 representing
787 individual genes (Supplementary Table 7). These
were enriched for lymphoma-associated pathways38, 39,
including PI signaling system (e.g. IMPA1, PIP5K1A,
PIK3C2A, PIK3CG, PIK3R1), JAK-STAT cascade (e.g.
STAT5A, STAT5B), BCR signaling (e.g. SYK, MAPK1,
PIK3R1, PIK3CG, PIK3CD, RASGRP3) and MAPK sig-
naling (e.g. MAPK1, MAPK10, MAP3K8, CACNG3)
(Supplementary Table 8). Interestingly, these pathways
were linked to the targets of those differentially expressed
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miRNAs that showed lower expression in relapse samples
(Fig. 2 and Supplementary Fig. 2).

Validation of the differentially expressed miRNAs
To validate the NGS data, we performed qRT-PCR for

eight differentially expressed miRNAs (miR-409-3p,
miR-381-3p, miR-493-5p, miR-370-3p, miR-4664-5p,
miR-485-5p, miR-26b-5p, and miR-550-5p) using an
independent set (n= 13) of matched primary and relapsed
DLBCL samples. Five miRNAs were excluded from the
validation, because of low expression levels undetectable
by qRT-PCR or because no functional primer pairs were

available. In the validation set, three miRNAs (miR-409-
3p, miR-381-3p, and miR-370-3p) were significantly
downregulated in majority of the relapse samples (Fig. 3).
The results provide support for the NGS results, and
confirm the low expression of these miRNAs in relapsed
DLBCL.

Overexpression of miR-370-3p, miR-381-3p, and miR-409-
3p increases sensitivity to rituximab and doxorubicin
In functional analyses we chose to focus on miR-370-3p,

miR-381-3p, and miR-409-3p as these differentially
expressed miRNAs showed significantly lower expression

Fig. 1 MiRNA-sequencing results. Seven primary-relapse DLBCL sample pairs were subjected to next-generation miRNA sequencing. One relapse
sample (DLBCL1_R) was exluded from the analyses because it failed the quality control. Therefore, the paired analyses included data from six pairs. a
MA (Log ratio (M) vs. mean average (A) expression) plot visualizing miRNA expression in primary and relapse sample pairs. The colors denote different
subgroups of miRNAs: differentially (DE), high and low expressed (high and low expressed miRNAs were filtered against a reference data set from
normal and non-malignant B-cells, as described in Methods). b A heatmap visualizing clustering of the DLBCL samples based on their miRNA
expression. c A heatmap of miRNAs differentially expressed between primary and relapse pairs with p-value < 0.05. FC fold change, na not assigned
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Fig. 2 Pathways regulated by the differentially expressed miRNAs. a–c The networks visualize miRNA-target gene associations with the B-cell
receptor signaling (a), MAPK signaling (b), and phosphatidylinositol signaling system (c). Green circles denote miRNAs downregulated in relapse,
whereas red circles denote miRNAs upregulated in relapse as compared to primary tumor. The networks were created with Cytoscape 3.1.1

Fig. 3 Validation of differentially expressed miRNAs. MiRNAs were validated in a cohort of 13 FFPE sample pairs with the miRCURY LNA™
Universal RT microRNA PCR system using 5S RNA as an endogenous control. MiRNAs which were significantly differentially expressed are shown in
the figure. Mean±SD of log2 transformed relative expression values in primary vs. relapse samples are shown (negative values, down in relapse;
positive values, up in relapse; zero values, no expression). All samples were run at least twice in triplicates
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Fig. 4 (See legend on next page.)
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in the relapsed samples, and appeared to be the most
potent regulators of the MAPK, BCR, and PI signaling
system. MiR-370-3p, miR-381-3p, and miR-409-3p were
stably overexpressed in SU-DHL-4 cells using lentiviral
vectors (Supplementary Fig. 3), and the expression of
selected target genes from the MAPK, BCR, and PI sig-
naling system was assayed by qRT-PCR. Overexpression
of miR-370-3p resulted in downregulation of MAP3K8,
PIK3R1, and PIK3CG mRNA (Fig. 4a). MiR-409-3p
downregulated PIK3R1 and MAPK1 mRNA, whereas
miR-381-3p suppressed IMPA1 and PIK3CD mRNA
(Fig. 4a). MiRNA-induced regulation was detected also at
the protein level, where miR-370-3p and miR-409-3p
inhibited ERK1/2 protein levels (Supplementary Fig. 4).
MiR-370-3p decreased PIK3CG protein levels, which is in
line with the in silico and qRT-PCR results. However, also
miR-409-3p and miR-381-3p affected PIK3CG, which is
not predicted to be targeted by these miRNAs. This
highlights the importance of experimental validation and
verifies the well-known fact that miRNAs have a broad
impact on protein expression40.
Next, we examined whether the miRNAs enhance the

growth inhibitory effects of doxorubicin and rituximab,
the key components of the R-CHOP regimen. In
untreated cells, the miRNA overexpression did not affect
the cell growth (Fig. 4b). However, when the cells were
treated with rituximab or doxorubicin alone or in com-
bination, the number of viable cells was lower in the
miRNA-expressing cells, as compared to control SV-Co10
cells (Fig. 4b). The data suggest that miR-370-3p, miR-
381-3p, and miR-409-3p favor a response of DLBCL cells
to rituximab and doxorubicin, and thus are involved in
the mechanisms of chemosensitivity or -resistance.

Survival association of the target genes
We investigated whether the expression of the target

genes of the differentially expressed miRNAs is associated
with survival. First, the prognostic impact was assessed in
the CGCI cohort of 92 patients treated with R-CHOP-like
regimen26. Clinical characteristics of the patients are
shown in Table 1. Twenty-eight genes from the PI sig-
naling system, BCR, and MAPK signaling pathways tar-
geted by the differentially expressed miRNAs were used in
the survival analyses. In Kaplan−Meier analyses, six genes
were associated with survival (Table 2 and Supplementary

Fig. 4). The patients with high expression of SYK, MAPK1,
CACGN3, IMPA1, PIP5K1A, and RASGRP3 genes had a
shorter survival in comparison to the remaining patients
with lower mRNA levels. In Cox multivariate analyses
with IPI, PIP5K1A expression remained an independent
negative prognostic factor for both PFS (RR= 3.431, CI95
= 1.407–8.366, p= 0.007) and OS (RR= 3.897, CI95=
1558–9.744, p= 0.004), whereas IMPA1 and RASGRP3
had adverse prognostic impact for OS (RR= 2.850, CI95
= 1.202–6.757, p= 0.017 and RR= 3.270, CI95=
1.255–8.520, p= 0.015, respectively), and SYK for PFS
(RR= 2.925, CI95= 1.152–7.425, p= 0.024) (Supple-
mentary Fig. 5). When target gene-related PFS and OS
were analyzed separately for the patients in different
molecular subtypes, high expression of PIP5K1A and
RASGRP3 was associated with shorter survival in the non-
GCB subtype, whereas high expression of IMPA1 was
associated with shorter survival in the GCB subtype. SYK
was associated with shorter PFS in the GCB subtype, and
MAPK1 and CACNG3 were associated with shorter PFS
in the non-GCB subtype (data not shown). When clinical
characteristics and gene expression were compared
according to molecular subtypes, no differences were
observed between the subgroups (Table 1).
To validate the survival data, LLMPP data set was

exploited (n= 233) (Table 1)3. In this cohort, high
expression of IMPA1 and PIP5K1A was found to have
adverse impact on OS (Fig. 5). Association of PIP5K1A
with poor survival was restricted to samples of non-GCB
subtype (not shown). Together, our clinical, molecular,
and functional data show that differentially expressed
miRNAs target gene expression and thereby regulate key
cell survival pathways, proliferation of lymphoma cells
and survival of patients with DLBCL progression.

Discussion
Genomic profiling of paired primary-relapse samples

enables the discovery of the biologic pathways and
mechanisms that drive therapy resistance. Here, we have
utilized NGS and profiled the miRNAome of matched
primary and relapsed DLBCL. MiRNAs are important
regulators of both normal and pathological cellular pro-
cesses controlling gene expression through complex reg-
ulatory networks. Recently, it was reported that miRNAs
are associated with DLBCL outcome and can be used as

(see figure on previous page)
Fig. 4 MiRNA-mediated regulation of target gene expression and drug response. a The expression of putative miRNA target genes was
determined by qRT-PCR from the mRNAs isolated from SU-DHL-4 cells stably overexpressing miR-370-3p, miR-381-3p, or miR-409-3p. Cells expressing
non-targeting controls (Co1 or Co10) were used as negative controls. The results normalized for GAPDH are shown as relative expression (2^−ΔΔCt). The
samples were run three times with triplicates, and the results are shown as mean±SD. b SU-DHL-4 cells stably overexpressing miR-370-3p, miR-381-3p, or
miR-409-3p were treated with rituximab (RX; 1 µg/ml), doxorubicin (DXR; 100 nM), as indicated. After 72 h incubation, the cell viability was determined by
CellTiter-Blue Cell Viability assay. Non-targeting SV_Co10-expressing cells were used as controls. The experiment was performed in triplicates and
repeated four times. The results are shown as mean±SEM. *p < 0.05, **p < 0.01
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predictors of treatment effectiveness10, 13. To our
knowledge, the present study is the first one characteriz-
ing the changes that occur in miRNA expression during

the treatment course of DLBCL and validating these
observations with functional studies. Our results show
that miRNA expression profiles remain relatively constant
as the disease progresses with only a few miRNAs that
were differentially expressed between the primary-relapse
pairs. The limitation of our study is the small sample size,
which may hamper the identification of differences
between primary and relapse tumors. However, the small
set of differentially expressed miRNAs participates in the
control of central lymphoma-associated pathways, and
represents a set of potential molecular targets for ther-
apeutic intervention. Putative targets for the differentially
expressed miRNAs were enriched for important
lymphoma-associated pathways, such as PI signaling sys-
tem, BCR, and MAPK signaling. Specifically, they were
targeted by miRNAs downregulated in relapse tissue,
suggesting that the pathways are activated during DLBCL
progression. Our data further demonstrated that high
expression of selected genes from these signaling path-
ways in the pretreatment samples was associated with

Table 1 Patient characteristics of the CGCI and LLMPP cohorts

CGCI LLMPP

Patients n (%) GCB n (%) Non-GCB n (%) p-val Patients n (%) GCB n (%) Non-GCB n (%) p-val

All n (%) 92 (100) 51 (55) 41 (45) 233 (100) 107 (46) 126 (54)

Gender Female 31 (34) 19 (37) 12 (29) 0.51 99 (42) 49 (46) 50 (40) 0.356

Male 61 (66) 32 (63) 29 (71) 134 (58) 58 (54) 76 (60)

Age <60 39 (42) 20 (39) 19 (46) 0.78 109 (47) 56 (52) 53 (42) 0.264

60–65 15 (16) 9 (18) 6 (15) 29 (12) 13 (12) 16 (13)

>60 38 42) 22 (43) 16 (39) 95 (41) 38 (36) 57 (45) 0.109

Stage I−II 44 (48) 28 (55) 16 (39) 0.15 105 (45) 54 (52) 51 (42)

III−IV 48 (52) 23 (45) 25 (61) 121 (55) 49 (48) 72 (58)

IPI 0–2 62 (67) 35 (69) 27 (66) 0.83 112 (48) 56 (76) 56 (62) 0.091

3–5 30 (33) 16 (31) 14 (34) 52 (52) 18 (24) 34 (38)

IMPA1 Low 69 (75) 42 (82) 27 (66) 0.09 218 (94) 104 (97) 114 (90) 0.058

High 13 (25) 9 (18) 14 (34) 15 (6) 3 (3) 12 (10)

MAPK1 Low 27 (29) 12 (24) 15 (37) 0.25 50 (21) 27 (25) 23 (18) 0.205

High 65 (71) 39 (76) 26 (63) 183 (79) 80 (75) 103 (82)

PIP5K1A Low 78 (85) 46 (90) 32 (78) 0.15 223 (96) 104 (97) 119 (94) 0.35

High 14 (15) 5 (10) 9 (22) 10 (4) 3 (3) 7 (6)

CACNG3 Low 77 (84) 46 (90) 31 (76) 0.09 131 (56) 63 (59) 68 (54) 0.508

High 15 (16) 5 (10) 10 (24) 102 (44) 44 (41) 58 (46)

RASGRP3 Low 82 (89) 47 (92) 35 (85) 0.33 183 (79) 77 (72) 106 (84) 0.026

High 10 (11) 4 (8) 6 (15) 50 (21) 30 (28) 20 (16)

SYK Low 81 (88) 44 (86) 37 (90) 0.75 219 (94) 98 (92) 121 (96) 0.176

High 11 (12) 7 (14) 4 (10) 14 (6) 9 (8) 5 (4)

Table 2 DE-miRNA target gene expression is associated
with survival in DLBCL patients (n = 92) (log-rank test)

Gene Pathway Targeting miRNA OSa (p-

val)

PFS (p-

val)

PIP5K1A PI miR-485-5p <0.001 <0.001

IMPA1 PI miR-381-3p 0.004 0.016

SYK BCR miR-370-3p 0.231 0.002

RASGRP3 BCR, MAPK miR-409-3p, miR-485-5p 0.001 <0.001

MAPK1 MAPK miR-370-3p, miR-409-3p,

miR-493-5p, miR-485-5p

0.248 0.038

CACNG3 MAPK miR-370-3p 0.224 0.007

a OS overall survival, PFS progression-free survival, PI phosphatidylinositol, BCR B-
cell receptor, MAPK mitogen-activated protein kinase
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poor survival. Importantly, the expression of PIP5K1A
and IMPA1 genes had negative prognostic impact on
survival in two independent DLBCL cohorts. PIP5K1A
and IMPA1 are components of the PI signaling pathway,
which is an important intracellular second-messenger
signaling system linking to the PI3K/AKT pathway. The
PI3K/AKT pathway in turn plays an important role in

controlling proliferation and survival of tumor cells, and
therefore represents a promising therapeutic target in
DLBCL39. IMPA1 (Inositol monophosphatase 1) is
responsible for the provision of inositol required for
synthesis of PI and polyphosphoinositides, whereas
PIP5K1A (Phosphatidylinositol-4-Phosphate 5-Kinase,
Type I, Alpha) catalyzes the phosphorylation of

Fig. 5 PIP5K1A and IMPA1 are significantly associated with survival in two DLBCL patient cohorts. a, b The chemoimmunotherapy-treated
patients from two independent cohorts (CGCI n = 92 (a) and LLMPP n = 233 (b)) were divided into two groups with high and low gene expression.
The ideal cut-off values were calculated using Cutoff Finder. Kaplan–Meier curves depict overall survival (OS) of patients whose tumors contained low
or high levels of the selected genes. p-values were obtained using a log-rank test
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phosphatidylinositol 4-phosphate (PIP) to form phos-
phatidylinositol 4,5-bisphosphate (PIP2), implicated in a
wide variety of cellular signaling pathways.
BCR signaling has also been suggested to act as a driver

of lymphoma development41. It is essential for normal
B-cell development and maturation, but has emerged as
an important target for the treatment of B-cell malig-
nancies, including DLBCL. Central hubs in the BCR
signaling pathway include SYK, Bruton’s tyrosine kinase
(BTK), and PI3K. Novel therapies targeting the BCR
signaling in lymphoma are currently under investigation.
For instance, ibrutinib, a small molecule inhibiting BTK
has shown significant anti-tumor activity in clinical stu-
dies on B-cell lymphomas42. Additionally, tonic BCR
signaling and lymphoma cell survival can be selectively
targeted with a SYK inhibitor fostamatinib, which
has shown activity against relapsed DLBCL in a phase I/II
study43.
MiR-409-3p, miR-381-3p, and miR-370-3p were vali-

dated as being downregulated in the relapse samples of an
independent patient cohort. Interestingly, overexpression
of these miRNAs enhanced the chemosensitivity of
DLBCL cells in vitro. Several studies have suggested that
miRNAs are novel players in mediating drug resistance.
Overexpression of miR-34a sensitized DLBCL cells to
doxorubicin in vitro44. MiR-17~92 cluster mediated che-
moresistance in mantle cell lymphoma45, and miR-331-5p
and miR-27a were downregulated in doxorubicin-
resistant leukemia cells46. MiR-381 may play a role in
regulating the drug resistance in leukemia cells47.
In addition to differentially expressed miRNAs, we

characterized miRNAs with high or low expression in the
DLBCL samples compared to a control data set of non-
malignant B-cells. Tumor suppressive miRNAs miR-129-
5p, miR-663a, andmiR-203a were hypermethylated at their
promoter region, suggesting methylation as a potential
mechanism for downregulation. This concurs with pre-
vious studies demonstrating hypermethylation of miR-129
and miR-203 in hematological cancers, including non-
Hodgkin lymphoma48, 49. Indeed, lower miR-129-5p
expression was associated with shorter survival in DLBCL
patients both with and without R-CHOP treatment31. In
our integrated miRNA−mRNA analysis miR-129-5p was
predicted to target several oncogenes that included IRF4,
PIM1, FOXP1, SYK, BCL10, RUNX1, andABL1. Thesewere
enriched for cancer-associated pathways, such as regulation
of I-kappaB kinase/NF-kappaB cascade, regulation of pro-
tein kinase cascade, cell death, and apoptosis (not shown).
In conclusion, our analysis of the miRNAome in mat-

ched primary refractory and relapsed DLBCL uncovers
biological processes underlying relapse/progression. In
addition, the data imply that miRNAs mediate the che-
moresistance of DLBCL. The results are novel and pro-
mising and emphasize that the molecular mechanisms of

DLBCL progression are complex, involve multiple path-
ways, and are heterogeneous between the patients.
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