13 research outputs found

    Native silica nanoparticles are powerful membrane disruptors

    No full text
    Silica nanoparticles are under development for intracellular drug delivery applications but can also have cytotoxic effects including cell membrane damage. In this study, we investigated the interactions of silica nanospheres of different size, surface chemistry and biocoating with membranes of phosphatidylcholine lipids. In liposome leakage assays many, but not all, of these nanoparticles induced dose-dependent dye leakage, indicative of membrane perturbation. It was found that 200 and 500 nm native-silica, aminated and carboxylated nanospheres induce near-total dye release from zwitterionic phosphatidylcholine liposomes at a particle/liposome ratio of ~1, regardless of their surface chemistry, which we interpret as particle-supported bilayer formation following a global rearrangement of the vesicular membrane. In contrast, 50 nm diameter native-silica nanospheres did not induce total dye leakage below a particle/liposome ratio of ~8, whereas amination or carboxylation, respectively, strongly reduced or prevented dye release. We postulate that for the smaller nanospheres, strong silica-bilayer interactions are manifested as bilayer engulfement of membrane-adsorbed particles, with localized lipid depletion eventually leading to collapse of the vesicular membrane. Protein coating of the particles considerably reduced dye leakage and lipid bilayer coating prevented dye release all together, while the inclusion of 33% anionic lipids in the liposomes reduced dye leakage for both native-silica and aminated surfaces. These results, which are compared with the effect of polystyrene nanoparticles and other engineered nanomaterials on lipid bilayers, and which are discussed in relation to nanosilica-induced cell membrane damage and cytotoxicity, indicate that a native-silica nanoparticle surface chemistry is a particularly strong membrane interaction motif

    Framework for Efficient Auto-Scaling of Virtual Network Functions in a Cloud Environment

    No full text
    Network Function Virtualization (NFV) offers an alternate method to design, deploy and manage network services. The NFV decouples network functions from the dedicated hardware and moves them to the virtual servers so that they can run in the software. One of the major strengths of the NFV is its ability to dynamically extend or reduce resources allocated to Virtual Network Functions (VNF) as needed and at run-time. There is a need for a comprehensive metering component in the cloud to store and process the metrics/samples for efficient auto-scaling or load-management of the VNF. In this paper, we propose an integrating framework for efficient auto-scaling of VNF using Gnocchi; a time-series database that is integrated within the framework to store, handle and index the time-series data. The objective of this study is to validate the efficacy of employing Gnocchi for auto-scaling of VNF, in terms of aggregated data points, database size, data recovery speed, and memory consumption. The employed methodology is to perform a detailed empirical analysis of the proposed framework by deploying a fully functional cloud to implement NFV architecture using several OpenStack components including Gnocchi. Our results show a significant improvement over the legacy Ceilometer configuration in terms of lower metering storage size, less memory utilization in processing and management of metrics, and reduced time delay in retrieving the monitoring data to evaluate alarms for the auto-scaling of VNF

    Analysis of Linear Hybrid Excited Flux Switching Machines with Low-Cost Ferrite Magnets

    No full text
    Linear hybrid excited flux switching machines (LHEFSM) combine the features of permanent magnet flux switching machines (PMFSM) and field excited flux switching machines (FEFSM). Because of the widespread usage of rare-earth PM materials, their costs are steadily rising. This study proposes an LHEFSM, a dual stator LHEFSM (DSLHEFSM), and a dual mover LHEFSM (DMLHEFSM) to solve this issue. The employment of ferrite magnets rather than rare-earth PM in these suggested designs is significant. Compared to traditional designs, the proposed designs feature greater thrust force, power density, reduced normal force, and a 25% decrease in PM volume. A yokeless primary structure was used in a DSLHEFSM to minimize the volume of the mover, increasing the thrust force density. In DMLHELFSM, on the other hand, a yokeless secondary structure was used to lower the secondary volume and the machine’s total cost. Single variable optimization was used to optimize all of the proposed designs. By completing a 3D study, the electromagnetic performances acquired from the 2D analysis were confirmed. Compared to conventional designs, the average thrust force in LHEFSM, DSLHEFSM, and DMLHEFSM was enhanced by 15%, 16.8%, and 15.6%, respectively. Overall, the presented machines had a high thrust force density, a high-power density, a high no-load electromotive force, and a low normal force, allowing them to be used in long-stroke applications

    Analysis of Linear Hybrid Excited Flux Switching Machines with Low-Cost Ferrite Magnets

    No full text
    Linear hybrid excited flux switching machines (LHEFSM) combine the features of permanent magnet flux switching machines (PMFSM) and field excited flux switching machines (FEFSM). Because of the widespread usage of rare-earth PM materials, their costs are steadily rising. This study proposes an LHEFSM, a dual stator LHEFSM (DSLHEFSM), and a dual mover LHEFSM (DMLHEFSM) to solve this issue. The employment of ferrite magnets rather than rare-earth PM in these suggested designs is significant. Compared to traditional designs, the proposed designs feature greater thrust force, power density, reduced normal force, and a 25% decrease in PM volume. A yokeless primary structure was used in a DSLHEFSM to minimize the volume of the mover, increasing the thrust force density. In DMLHELFSM, on the other hand, a yokeless secondary structure was used to lower the secondary volume and the machine’s total cost. Single variable optimization was used to optimize all of the proposed designs. By completing a 3D study, the electromagnetic performances acquired from the 2D analysis were confirmed. Compared to conventional designs, the average thrust force in LHEFSM, DSLHEFSM, and DMLHEFSM was enhanced by 15%, 16.8%, and 15.6%, respectively. Overall, the presented machines had a high thrust force density, a high-power density, a high no-load electromotive force, and a low normal force, allowing them to be used in long-stroke applications

    Scalable multiport converter structure for easy grid integration of alternate energy sources for generation of isolated voltage sources for mmc

    Get PDF
    This paper presents a novel, scalable, and modular multiport power electronic topology for the integration of multiple resources. This converter is not only scalable in terms of the integration of multiple renewable energy resources (RES) and storage devices (SDs) but is also scalable in terms of output ports. Multiple dc outputs of a converter are designed to serve as input to the stack-ing modules (SMs) of the modular multilevel converter (MMC). The proposed multiport converter is bidirectional in nature and superior in terms of functionality in a way that a modular universal converter is responsible for the integration of multiple RES/SDs and regulates multiple dc output ports for SMs of MMC. All input ports can be easily integrated (and controlled), and output ports also can be controlled independently in response to any load variations. An isolated active half-bridge converter with multiple secondaries acts as a central hub for power processing with multiple renewable energy resources that are integrated at the primary side. To verify the proposed con-verter, a detailed design of the converter-based system is presented along with the proposed control algorithm for managing power on the individual component level. Additionally, different modes of power management (emulating the availability/variability of renewable energy sources (RES)) are exhibited and analyzed here. Finally, detailed simulation results are presented in detail for the validation of the proposed concepts and design process.Funding: This research was funded by Taif University Researchers Supporting Project, number (TURSP-2020/228).Scopu

    Electrochemical Behavior of Inductively Sintered Al/TiO2 Nanocomposites Reinforced by Electrospun Ceramic Nanofibers

    No full text
    This study is focuses on the investigation of the effect of using TiO2 short nanofibers as a reinforcement of an Al matrix on the corrosion characteristics of the produced nanocomposites. The TiO2 ceramic nanofibers used were synthesized via electrospinning by sol-gel process, then calcinated at a high temperature to evaporate the residual polymers. The fabricated nanocomposites contain 0, 1, 3 and 5 wt.% of synthesized ceramic nanofibers (TiO2). Powder mixtures were mixed for 1 h via high-energy ball milling in a vacuum atmosphere before being inductively sintered through a high-frequency induction furnace at 560 °C for 6 min. The microstructure of the fabricated samples was studied by optical microscope and field emission scanning electron microscope (FESEM) before and after corrosion studies. Corrosion behavior of the sintered samples was evaluated by both electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization techniques (PPT) in 3.5% NaCl solution for one hour and 24-h immersion times. The results show that even though the percentage of ceramic nanofibers added negatively control corrosion resistance, it is still possible to increase resistance against corrosion for the fabricated nanocomposite by more than 75% in the longer exposure time periods
    corecore