28 research outputs found

    Frequency tunability of solid-core photonic crystal fibers filled with nanoparticle-doped liquid crystals

    Get PDF
    We infiltrate liquid crystals doped with BaTiO3 nanoparticles in a photonic crystal fiber and compare the measured transmission spectrum with the one achieved without dopant. New interesting features, such as frequency modulation response of the device and a transmission spectrum with tunable attenuation on the short wavelength side of the widest bandgap, suggest a potential application of this device as a tunable all-in-fiber gain equalization filter with an adjustable slope. The tunability of the device is achieved by varying the amplitude and the frequency of the applied external electric field. The threshold voltage for doped and undoped liquid crystals in a silica capillary and in a glass cell are also measured as a function of the frequency of the external electric field and the achieved results are compared

    Hybrid Ytterbium-doped large-mode-area photonic crystal fiber amplifier for long wavelengths.

    Get PDF
    A large-mode-area Ytterbium-doped photonic crystal fiber amplifier with build-in gain shaping is presented. The fiber cladding consists of a hexagonal lattice of air holes, where three rows are replaced with circular high-index inclusions. Seven missing air holes define the large-mode-area core. Light confinement is achieved by combined index and bandgap guiding, which allows for single-mode operation and gain shaping through distributed spectral filtering of amplified spontaneous emission. The fiber properties are ideal for amplification in the long wavelength regime of the Ytterbium gain spectrum above 1100 nm, and red shifting of the maximum gain to 1130 nm is demonstrated
    corecore