154 research outputs found
OpenSep: A generalizable open source pipeline for SOFA score calculation and Sepsis-3 classification
EHR-based sepsis research often uses heterogeneous definitions of sepsis leading to poor generalizability and difficulty in comparing studies to each other. We have developed OpenSep, an open-source pipeline for sepsis phenotyping according to the Sepsis-3 definition, as well as determination of time of sepsis onset and SOFA scores. The Minimal Sepsis Data Model was developed alongside the pipeline to enable the execution of the pipeline to diverse sources of electronic health record data. The pipeline\u27s accuracy was validated by applying it to the MIMIC-IV version 1.0 data and comparing sepsis onset and SOFA scores to those produced by the pipeline developed by the curators of MIMIC. We demonstrated high reliability between both the sepsis onsets and SOFA scores, however the use of the Minimal Sepsis Data model developed for this work allows our pipeline to be applied to more broadly to data sources beyond MIMIC
An open access database for the evaluation of heart sound algorithms
This is an author-created, un-copyedited version of an article published in Physiological Measurement. IOP Publishing Ltd is not responsible for any errors or omissions in this version of the manuscript or any version derived from it. The Version of Record is available online at https://doi.org/10.1088/0967-3334/37/12/2181In the past few decades, analysis of heart sound signals (i.e. the phonocardiogram or PCG), especially for automated heart sound segmentation and classification, has been widely studied and has been reported to have the potential value to detect pathology accurately in clinical applications. However, comparative analyses of algorithms in the literature have been hindered by the lack of high-quality, rigorously validated, and standardized open databases of heart sound recordings. This paper describes a public heart sound database, assembled for an international competition, the PhysioNet/Computing in Cardiology (CinC) Challenge 2016. The archive comprises nine different heart sound databases sourced from multiple research groups around the world. It includes 2435 heart sound recordings in total collected from 1297 healthy subjects and patients with a variety of conditions, including heart valve disease and coronary artery disease. The recordings were collected from a variety of clinical or nonclinical (such as in-home visits) environments and equipment. The length of recording varied from several seconds to several minutes. This article reports detailed information about the subjects/patients including demographics (number, age, gender), recordings (number, location, state and time length), associated synchronously recorded signals, sampling frequency and sensor type used. We also provide a brief summary of the commonly used heart sound segmentation and classification methods, including open source code provided concurrently for the Challenge. A description of the PhysioNet/CinC Challenge 2016, including the main aims, the training and test sets, the hand corrected annotations for different heart sound states, the scoring mechanism, and associated open source code are provided. In addition, several potential benefits from the public heart sound database are discussed.This work was supported by the National Institutes of Health (NIH) grant R01-EB001659 from the National Institute of Biomedical Imaging and Bioengineering (NIBIB) and R01GM104987 from the National Institute of General Medical Sciences.Liu, C.; Springer, DC.; Li, Q.; Moody, B.; Abad Juan, RC.; Li, Q.; Moody, B.... (2016). An open access database for the evaluation of heart sound algorithms. Physiological Measurement. 37(12):2181-2213. doi:10.1088/0967-3334/37/12/2181S21812213371
Variation in styles of rifting in the Gulf of California
Author Posting. © Nature Publishing Group, 2007. This is the author's version of the work. It is posted here by permission of Nature Publishing Group for personal use, not for redistribution. The definitive version was published in Nature 448 (2007): 466-469, doi:10.1038/nature06035.The rifting of continental lithosphere is a fundamental solid-earth process that leads to the formation of rifted continental margins and ocean basins. Understanding of this process comes from observations of the geometry of rifted margins and the magmatism resulting from rifting, which inform us about the strength of the lithosphere, the state of the underlying mantle, and the transition from rifting to seafloor spreading. Here we describe results from the PESCADOR seismic experiment in the southern Gulf of California and present the first crustal-scale images across conjugate margins of multiple segments within a single rift that has reached the stage of oceanic spreading. A surprisingly large variation in rifting style and magmatism is observed between these segments, from wide rifting with minor syn-rift magmatism to narrow rifting in magmatically robust segments. These differences encompass much of the variation observed across nearly all other non-end-member continental margins. The characteristics of magmatic endmember margins are typically explained in terms of mantle temperature. Our explanations for the variation in the Gulf of California, in contrast, invoke mantle depletion to account for wide, magma-poor rifting and mantle fertility and possibly the influence of sediments to account for robust rift and post-rift magmatism in the Gulf of California. These factors may vary laterally over small distances in regions that have transitioned from convergence to extension, as is the case for the Gulf of California and many other rifts.This work was funded by a grant from the U.S. NSF-MARGINS program
Hundreds of variants clustered in genomic loci and biological pathways affect human height
Most common human traits and diseases have a polygenic pattern of inheritance: DNA sequence variants at many genetic loci influence the phenotype. Genome-wide association (GWA) studies have identified more than 600 variants associated with human traits, but these typically explain small fractions of phenotypic variation, raising questions about the use of further studies. Here, using 183,727 individuals, we show that hundreds of genetic variants, in at least 180 loci, influence adult height, a highly heritable and classic polygenic trait. The large number of loci reveals patterns with important implications for genetic studies of common human diseases and traits. First, the 180 loci are not random, but instead are enriched for genes that are connected in biological pathways (P = 0.016) and that underlie skeletal growth defects (P < 0.001). Second, the likely causal gene is often located near the most strongly associated variant: in 13 of 21 loci containing a known skeletal growth gene, that gene was closest to the associated variant. Third, at least 19 loci have multiple independently associated variants, suggesting that allelic heterogeneity is a frequent feature of polygenic traits, that comprehensive explorations of already-discovered loci should discover additional variants and that an appreciable fraction of associated loci may have been identified. Fourth, associated variants are enriched for likely functional effects on genes, being over-represented among variants that alter amino-acid structure of proteins and expression levels of nearby genes. Our data explain approximately 10% of the phenotypic variation in height, and we estimate that unidentified common variants of similar effect sizes would increase this figure to approximately 16% of phenotypic variation (approximately 20% of heritable variation). Although additional approaches are needed to dissect the genetic architecture of polygenic human traits fully, our findings indicate that GWA studies can identify large numbers of loci that implicate biologically relevant genes and pathways.
Uncovering a Macrophage Transcriptional Program by Integrating Evidence from Motif Scanning and Expression Dynamics
Macrophages are versatile immune cells that can detect a variety of pathogen-associated molecular patterns through their Toll-like receptors (TLRs). In response to microbial challenge, the TLR-stimulated macrophage undergoes an activation program controlled by a dynamically inducible transcriptional regulatory network. Mapping a complex mammalian transcriptional network poses significant challenges and requires the integration of multiple experimental data types. In this work, we inferred a transcriptional network underlying TLR-stimulated murine macrophage activation. Microarray-based expression profiling and transcription factor binding site motif scanning were used to infer a network of associations between transcription factor genes and clusters of co-expressed target genes. The time-lagged correlation was used to analyze temporal expression data in order to identify potential causal influences in the network. A novel statistical test was developed to assess the significance of the time-lagged correlation. Several associations in the resulting inferred network were validated using targeted ChIP-on-chip experiments. The network incorporates known regulators and gives insight into the transcriptional control of macrophage activation. Our analysis identified a novel regulator (TGIF1) that may have a role in macrophage activation
HLA-DQA1*05 carriage associated with development of anti-drug antibodies to infliximab and adalimumab in patients with Crohn's Disease
Anti-tumor necrosis factor (anti-TNF) therapies are the most widely used biologic drugs for treating immune-mediated diseases, but repeated administration can induce the formation of anti-drug antibodies. The ability to identify patients at increased risk for development of anti-drug antibodies would facilitate selection of therapy and use of preventative strategies.This article is freely available via Open Access. Click on Publisher URL to access the full-text
- …