45 research outputs found

    Evidence for Circumpolar Distribution of Planktonic Archaea in the Southern Ocean

    Get PDF
    Surveys using rRNA-targeted probes specific for the 3 domains of life (Eucarya, Archaea, and Bacteria) indicated the presence, and at times high abundance, of archaeal rRNA in a variety of water masses surrounding Antarctica. Hybridization signals of archaeal rRNA contributed significantly to that of total picoplankton rRNA both north and south of the Polar Front in Drake Passage. Late winter surface water populations collected around the South Shetland Islands also yielded relatively high archaeal rRNA hybridization signals, approaching 10% or greater of the total rRNA. Summer samples collected in the western region of the Antarctic Peninsula and at McMurdo Sound in the Ross Sea region of Antarctica yielded lower amounts of archaeal rRNA in the surface waters, and higher levels of archaeal rRNA at depth (150 to 500 m). The hybridization data were compared to biological, chemical, and hydrographic information when possible. In surface waters, archaeal rRNA and chlorophyll a varied inversely. The data presented here further supports the hypothesis that planktonic archaea are a common, widespread and likely ecologically important component of Antarctic picoplankton assemblages. The presence of these archaea in circumpolar deep water suggests a conduit for their circumpolar transport around Antarctica via the Antarctic Circumpolar Current, as well as their export to the deep sea, or to intermediate waters of the South Atlantic via mixing at the polar front

    Protein Phosphatase 2A Controls Ethylene Biosynthesis by Differentially Regulating the Turnover of ACC Synthase Isoforms

    Get PDF
    The gaseous hormone ethylene is one of the master regulators of development and physiology throughout the plant life cycle. Ethylene biosynthesis is stringently regulated to permit maintenance of low levels during most phases of vegetative growth but to allow for rapid peaks of high production at developmental transitions and under stress conditions. In most tissues ethylene is a negative regulator of cell expansion, thus low basal levels of ethylene biosynthesis in dark-grown seedlings are critical for optimal cell expansion during early seedling development. The committed steps in ethylene biosynthesis are performed by the enzymes 1-aminocyclopropane 1-carboxylate synthase (ACS) and 1-aminocyclopropane 1-carboxylate oxidase (ACO). The abundance of different ACS enzymes is tightly regulated both by transcriptional control and by post-translational modifications and proteasome-mediated degradation. Here we show that specific ACS isozymes are targets for regulation by protein phosphatase 2A (PP2A) during Arabidopsis thaliana seedling growth and that reduced PP2A function causes increased ACS activity in the roots curl in 1-N-naphthylphthalamic acid 1 (rcn1) mutant. Genetic analysis reveals that ethylene overproduction in PP2A-deficient plants requires ACS2 and ACS6, genes that encode ACS proteins known to be stabilized by phosphorylation, and proteolytic turnover of the ACS6 protein is retarded when PP2A activity is reduced. We find that PP2A and ACS6 proteins associate in seedlings and that RCN1-containing PP2A complexes specifically dephosphorylate a C-terminal ACS6 phosphopeptide. These results suggest that PP2A-dependent destabilization requires RCN1-dependent dephosphorylation of the ACS6 C-terminus. Surprisingly, rcn1 plants exhibit decreased accumulation of the ACS5 protein, suggesting that a regulatory phosphorylation event leads to ACS5 destabilization. Our data provide new insight into the circuitry that ensures dynamic control of ethylene synthesis during plant development, showing that PP2A mediates a finely tuned regulation of overall ethylene production by differentially affecting the stability of specific classes of ACS enzymes

    A metagenomic assessment of winter and summer bacterioplankton from Antarctica Peninsula coastal surface waters

    Get PDF
    © The Author(s), 2012. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in The ISME Journal 6 (2012): 1901-1915, doi:10.1038/ismej.2012.31.Antarctic surface oceans are well-studied during summer when irradiance levels are high, sea ice is melting and primary productivity is at a maximum. Coincident with this timing, the bacterioplankton respond with significant increases in secondary productivity. Little is known about bacterioplankton in winter when darkness and sea-ice cover inhibit photoautotrophic primary production. We report here an environmental genomic and small subunit ribosomal RNA (SSU rRNA) analysis of winter and summer Antarctic Peninsula coastal seawater bacterioplankton. Intense inter-seasonal differences were reflected through shifts in community composition and functional capacities encoded in winter and summer environmental genomes with significantly higher phylogenetic and functional diversity in winter. In general, inferred metabolisms of summer bacterioplankton were characterized by chemoheterotrophy, photoheterotrophy and aerobic anoxygenic photosynthesis while the winter community included the capacity for bacterial and archaeal chemolithoautotrophy. Chemolithoautotrophic pathways were dominant in winter and were similar to those recently reported in global ‘dark ocean’ mesopelagic waters. If chemolithoautotrophy is widespread in the Southern Ocean in winter, this process may be a previously unaccounted carbon sink and may help account for the unexplained anomalies in surface inorganic nitrogen content.CSR was supported by an NSF Postdoctoral Fellowship in Biological Informatics (DBI-0532893). The research was supported by National Science Foundation awards: ANT 0632389 (to AEM and JJG), and ANT 0632278 and 0217282 (to HWD), all from the Antarctic Organisms and Ecosystems Program

    Talent management motives and practices in an emerging market: A comparison between MNEs and local firms

    Get PDF
    This paper compares the differences in talent management motivations and practices between MNEs and local firms in the emerging market of Turkey. It uses institutional theory and the resource based view of the firm to explain these differences. Examining data from 201 firms the findings show significant differences between the talent management motives of MNEs and local firms, with MNEs having more tactical motivations for their talent management systems. The study also shows significant differences in the talent management practices between MNEs and local firms, with MNEs implementing more robust systems of talent management overall. The findings indicate that the motives for TM and the practices that are pursued by organizations are society-bound. The study of TM motives and practices has to be framed within the context of the institution as this shapes the way in which actors perceive and respond to environmental and organizational stimuli and the extent to which they seek to protect the rules that shape and structure their environments

    Governing by Panic: The Politics of the Eurozone Crisis

    Full text link

    Atypical Protein Phosphatase 2A Gene Families Do Not Expand via Paleopolyploidization

    No full text

    Disparate Roles for the Regulatory A Subunit Isoforms in Arabidopsis Protein Phosphatase 2A

    No full text
    The heterotrimeric protein phosphatase 2A (PP2A) complex comprises a catalytic subunit and regulatory A and B subunits that modulate enzyme activity and mediate interactions with other proteins. We report here the results of a systematic analysis of the Arabidopsis (Arabidopsis thaliana) regulatory A subunit gene family, which includes the ROOTS CURL IN NAPHTHYLPHTHALAMIC ACID1 (RCN1), PP2AA2, and PP2AA3 genes. All three A subunit isoforms accumulate in the organs of seedlings and adult plants, suggesting extensive overlap in expression domains. We have isolated pp2aa2 and pp2aa3 mutants and found that their phenotypes are largely normal and do not resemble that of rcn1. Whereas rcn1 pp2aa2 and rcn1 pp2aa3 double mutants exhibit striking abnormalities in all stages of development, the pp2aa2 pp2aa3 double mutant shows only modest defects. Together, these data suggest that RCN1 performs a cardinal role in regulation of phosphatase activity and that PP2AA2 and PP2AA3 functions are unmasked only when RCN1 is absent

    Vertical distribution and phylogenetic characterization of marine planktonic Archaea in the Santa Barbara Channel

    No full text
    7 pages, 6 figures, 1 tableNewly described phylogenetic lineages within the domain Archaea have recently been found to be significant components of marine picoplankton assemblages. To better understand the ecology of these microorganisms, we investigated the relative abundance, distribution, and phylogenetic composition of Archaea in the Santa Barbara Channel. Significant amounts of archaeal rRNA and rDNA (genes coding for rRNA) were detected in all samples analyzed. The relative abundance of archaeal rRNA as measured by quantitative oligonucleotide hybridization experiments was low in surface waters but reached higher values (20 to 30% of prokaryotic rRNA) at depths below 100 m. Probes were developed for the two major groups of marine Archaea detected. rRNA originating from the euryarchaeal group (group II) was most abundant in surface waters, whereas rRNA from the crenarchaeal group (group I) dominated at depth. Clone libraries of PCR-amplified archaeal rRNA genes were constructed with samples from 0 and 200 m deep. Screening of libraries by hybridization with specific oligonucleotide probes, as well as subsequent sequencing of the cloned genes, indicated that virtually all archaeal rDNA clones recovered belonged to one of the two groups. The recovery of cloned rDNA sequence types in depth profiles exhibited the same trends as were observed in quantitative rRNA hybridization experiments. One representative of each of 18 distinct restriction fragment length polymorphism types was partially sequenced. Recovered sequences spanned most of the previously reported phylogenetic diversity detected in planktonic crenarchaeal and euryarchaeal groups. Several rDNA sequences appeared to be harbored in archaeal types which are widely distributed in marine coastal waters. In total, data suggest that marine planktonic crenarchaea and euryarchaea of temperate coastal habitats thrive in different zones of the water column. The relative rRNA abundance of the crenarchaeal group suggests that its members constitute a significant fraction of the prokaryotic biomass in subsurface coastal watersPeer reviewe
    corecore