422 research outputs found

    Perspective: Organic electronic materials and devices for neuromorphic engineering

    Full text link
    Neuromorphic computing and engineering has been the focus of intense research efforts that have been intensified recently by the mutation of Information and Communication Technologies (ICT). In fact, new computing solutions and new hardware platforms are expected to emerge to answer to the new needs and challenges of our societies. In this revolution, lots of candidates technologies are explored and will require leveraging of the pro and cons. In this perspective paper belonging to the special issue on neuromorphic engineering of Journal of Applied Physics, we focus on the current achievements in the field of organic electronics and the potentialities and specificities of this research field. We highlight how unique material features available through organic materials can be used to engineer useful and promising bioinspired devices and circuits. We also discuss about the opportunities that organic electronic are offering for future research directions in the neuromorphic engineering field

    Filamentary Switching: Synaptic Plasticity through Device Volatility

    Full text link
    Replicating the computational functionalities and performances of the brain remains one of the biggest challenges for the future of information and communication technologies. Such an ambitious goal requires research efforts from the architecture level to the basic device level (i.e., investigating the opportunities offered by emerging nanotechnologies to build such systems). Nanodevices, or, more precisely, memory or memristive devices, have been proposed for the implementation of synaptic functions, offering the required features and integration in a single component. In this paper, we demonstrate that the basic physics involved in the filamentary switching of electrochemical metallization cells can reproduce important biological synaptic functions that are key mechanisms for information processing and storage. The transition from short- to long-term plasticity has been reported as a direct consequence of filament growth (i.e., increased conductance) in filamentary memory devices. In this paper, we show that a more complex filament shape, such as dendritic paths of variable density and width, can permit the short- and long-term processes to be controlled independently. Our solid-state device is strongly analogous to biological synapses, as indicated by the interpretation of the results from the framework of a phenomenological model developed for biological synapses. We describe a single memristive element containing a rich panel of features, which will be of benefit to future neuromorphic hardware systems

    Cation Discrimination in Organic Electrochemical Transistors by Dual Frequency Sensing

    Full text link
    In this work, we propose a strategy to sense quantitatively and specifically cations, out of a single organic electrochemical transistor (OECT) device exposed to an electrolyte. From the systematic study of six different chloride salts over 12 different concentrations, we demonstrate that the impedance of the OECT device is governed by either the channel dedoping at low frequency and the electrolyte gate capacitive coupling at high frequency. Specific cationic signatures, which originates from the different impact of the cations behavior on the poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) polymer and their conductivity in water, allow their discrimination at the same molar concentrations. Dynamic analysis of the device impedance at different frequencies could allow the identification of specific ionic flows which could be of a great use in bioelectronics to further interpret complex mechanisms in biological media such as in the brain.Comment: Full text and supporting informatio

    An artificial spiking synapse made of molecules and nanoparticles

    Get PDF
    Molecule-based devices are envisioned to complement silicon devices by providing new functions or already existing functions at a simpler process level and at a lower cost by virtue of their self-organization capabilities, moreover, they are not bound to von Neuman architecture and this may open the way to other architectural paradigms. Here we demonstrate a device made of conjugated molecules and metal nanoparticles (NPs) which behaves as a spiking synapse suitable for integration in neural network architectures. We demonstrate that this device exhibits the main behavior of a biological synapse. These results open the way to rate coding utilization of the NOMFET in perceptron and Hopfield networks. We can also envision the NOMFET as a building block of neuroelectronics for interfacing neurons or neuronal logic devices made from patterned neuronal cultures with solid-state devices and circuits

    Pavlov's dog associative learning demonstrated on synaptic-like organic transistors

    Full text link
    In this letter, we present an original demonstration of an associative learning neural network inspired by the famous Pavlov's dogs experiment. A single nanoparticle organic memory field effect transistor (NOMFET) is used to implement each synapse. We show how the physical properties of this dynamic memristive device can be used to perform low power write operations for the learning and implement short-term association using temporal coding and spike timing dependent plasticity based learning. An electronic circuit was built to validate the proposed learning scheme with packaged devices, with good reproducibility despite the complex synaptic-like dynamic of the NOMFET in pulse regime

    Photonic crystal fibre source of photon pairs for quantum information processing

    Full text link
    We demonstrate two key components for optical quantum information processing: a bright source of heralded single photons; and a bright source of entangled photon pairs. A pair of pump photons produces a correlated pair of photons at widely spaced wavelengths (583 nm and 900 nm), via a χ(3)\chi^{(3)} four-wave mixing process. We demonstrate a non-classical interference between heralded photons from independent sources with a visibility of 95%, and an entangled photon pair source, with a fidelity of 89% with a Bell state.Comment: 4 pages, 3 figure

    High quality asynchronous heralded single photon source at telecom wavelength

    Full text link
    We report on the experimental realization and characterization of an asynchronous heralded single photon source based on spontaneous parametric down conversion. Photons at 1550nm are heralded as being inside a single-mode fiber with more than 60% probability, and the multi-photon emission probability is reduced by up to a factor 600 compared to poissonian light sources. These figures of merit, together with the choice of telecom wavelength for the heralded photons are compatible with practical applications needing very efficient and robust single photon sources.Comment: 7 pages, 8 figure

    Expanding memory in recurrent spiking networks

    Full text link
    Recurrent spiking neural networks (RSNNs) are notoriously difficult to train because of the vanishing gradient problem that is enhanced by the binary nature of the spikes. In this paper, we review the ability of the current state-of-the-art RSNNs to solve long-term memory tasks, and show that they have strong constraints both in performance, and for their implementation on hardware analog neuromorphic processors. We present a novel spiking neural network that circumvents these limitations. Our biologically inspired neural network uses synaptic delays, branching factor regularization and a novel surrogate derivative for the spiking function. The proposed network proves to be more successful in using the recurrent connections on memory tasks
    • …
    corecore