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Molecule-based devices are envisioned to complement silicon devices by providing new 

functions or already existing functions at a simpler process level and at a lower cost by virtue of 

their self-organization capabilities, moreover, they are not bound to von Neuman architecture 

and this may open the way to other architectural paradigms (1). Here we demonstrate a device 

made of conjugated molecules and metal  nanoparticles (NPs) which behaves as a spiking 

synapse suitable for integration in neural network architectures. We demonstrate that this 

device exhibits the main behavior of a biological  synapse. The device (Fig. 1A) consists of a 

bottom-gate, bottom source-drain contact organic transistor configuration. The gold NPs (5 nm 

in diameter) were immobilized into the source-drain channel using surface chemistry (self-

assembled monolayers) and they were subsequently covered by a thin film (25-35 nm thick) of 

pentacene (see supporting online material). This device gathers the behavior of a transistor and 

a memory (2) and it is referenced to as NOMFET (Nanoparticle Organic  Memory Field Effect 

Transistor).

 The most important feature of a synapse is its ability to transmit in a given way an action 

potentials (APs) from one pre-synapse neuron N1, to a post-synapse neuron N2. When a 

sequence of APs is send by N1 to N2, the synaptic  behavior determines the way the information 

is treated. The synapse transforms a spike arriving from the presynaptic  neurone into a 

chemical discharge of neurotransmitters that will  be detected by the post-synaptic neurone and 

transformed into a new spike. Markram and Tsodyks (3, 4) have proposed a phenomenological 

model to describe the synapse behavior. The synapse possesses a finite amount of resources: 

the chemical neurotransmitters. Each spike activates a fraction of these resources and the 
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amplitude of the transmitted spike is proportional to this fraction. The fraction of 

neurotransmitters spend to transmit the information is then recovered with a characteristic  time 

τrec that is typically in the range of the second. The response of a synapse to a train of pulses 

with variable frequency can be calculated by an iterative model (5) which describes the 

biological synapse behavior reasonably well  (Fig. 1B). The main feature of a biological synapse 

is to present a dependence of the amplitude of the output spike with the frequency of the input 

spike. It also depends on the history of the synapse which determines the amount of available 

neurotransmitter at a given time. Such a typical behavior is shown in Fig. 1B:  at high(low) 

frequency, the period of the input signal  is lower(larger) than τrec and the output signal 

decreases(increases) at each successive pulse generating a depressing(facilitating) behavior 

(Fig. 1B).

 We used the NOMFET as a "pseudo two-terminal device". The gate receives the same 

input voltage (a train of pulse at frequency 1/T, amplitude V, and pulse width W) as the source 

electrode. The output is the drain current (Fig. 1A).  We measured the response of the 

NOMFET to sequences of pulses with different periods, T (Fig. 1C). During such experiments, 

the NPs are alternatively charged during the pulse duration and discharged between pulses (2). 

The value of the current at a certain time depends on the full  history of the device that 

determines the amount of charges presents in the NPs. To illustrate this point let us consider the 

system at the beginning of a particular sequence with period T (Fig. 1C), where the NPs contain 

some charges. If T<<τd (τd is the NP discharge time constant of about 20 s here), more and 

more holes are trapped in NPs and the NOMFET presents a depressing behavior. Then, for a 

larger period T (Fig. 1C), NPs have enough time to be discharged between pulses and the 

sequence presents a facilitating behavior. This feature exactly reproduces the behavior of a 

biological synapse. The holes trapped in the NPs play the role of the neurotransmitters and the 

output signal, ID, is a decreasing function of the number of holes stored in the NPs (2). At each 

spike, a certain amount of holes are trapped in the NPs. Between pulses the system relaxes: 

the holes escape with a characteristic time τd. This behavior persists when shrinking the 

NOMFET to a source-drain channel  of 1 µm (Fig. 1D). In that case, we used a constant dc bias 
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on the common gate (due to channel reduction, the lateral field is sufficient to charge and 

discharge the NP without the need to applied the pulse on the gate electrode). This features 

would simplify the architecture design of neural  networks using NOMFETs since a separate gate 

is not required for each NOMFET. Note that the depressing/facilitating behaviors are now 

inverted (with respect of the frequency of the pulses) and the time constant decreased- see 

supporting online material. Finally, such a synaptic behavior was not observed for the reference 

pentacene OFET (no NPs) - Fig. S2.

 These results open the way to rate coding utilization (6) of the NOMFET in perceptron 

and Hopfield networks (7). We can also envision the NOMFET as a building block of 

neuroelectronics for interfacing neurons or neuronal logic  devices made from patterned 

neuronal cultures with solid-state devices and circuits (8, 9).
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Fig. 1. (A) Schematic view of the NOMFET and measurement configuration. (B) Comparison 
between the measured and simulated behaviors of a synapse in layer 2/3 of rat primary 
visual cortex (from Ref. (5)). (C) Typical responses of a large (12 µm) NOMFET excited 
by a voltage pule (-30 V, 100 ms) at several frequencies. (D) Typical response of a 1 µm 
NOMFET excited with the same voltage pulse on the source electrode, while the gate is 
at a fixed bias of -20V.  
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Materials and methods

The NOMFET are processed using a bottom-gate electrode configuration. We used highly-

doped (∼10-3 Ω.cm) p-type silicon covered with a thermally grown 200 nm thick silicon dioxide. 

Before use, these wafers were cleaned by a piranha solution (H2SO4 /H2O2, 2/1 v/v) for 15 
minutes and then ultraviolet irradiated in ozone atmosphere (ozonolysis) for 30 minutes 

(Caution: piranha solution is highly exothermic and reacts violently with organics). Networks of 
square-shaped gold electrodes (113 µm sides, inter electrode gaps of 12 µm) were deposited 

on the substrate by vacuum evaporation of titanium/gold (20/200 nm) through a shadow mask. 
Networks of electrodes with a smaller gap (1 µm) were fabricated by usual photo-lithography.

 Then, the SiO2 (gate dielectric) was functionalized by self-assembled monolayer (SAM) 
of a thiol-ended molecule. The SAM was prepared by a silanization reaction in gas phase. The 

oxidized silicon with gold electrodes wafer was placed overnight in the presence of vapors of 
freshly distilled mercaptopropyltrimethoxysilane (MPTS) in a laboratory glassware at 0.2 Torr. 

This freshly prepared substrate was immersed in a gold nanoparticles (NPs) solution. We used 
a solution of 4-5 nm (in diameter) dodecanethiol functionalized gold nanoparticles (2 % in 

toluene) supplied by Aldrich. This starting solution is diluted 100 times in toluene. As expected, 
thiol capped Au NPs readily react with thiol-terminated SAM by ligand exchange forming a 

covalent bond with the surface. We present in figure S1 a scanning electron microscopy (SEM) 
image of the inter-electrode gap. We obtained a rather uniform distribution of NPs (no NP  
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aggregation) with a density of about 6.5x1011 NP/cm2. Finally, a 35 nm thick pentacene film was 

evaporated at a rate of 0.1 Å/s. A reference device of pentacene without NPs was also realized 

in the same run of deposition to evidence the effect of NPs on the electrical properties.

Fig. S1: SEM image of the Inter-electrode region covered with Au NPs attached on the thiolated 
SAM. The NPs density (about 6.5x1011 cm-2) is homogeneous on the entire sample.

The NOMFET electrical characteristics were measured with an Agilent 4155C semiconductor 
parameter analyzer, the input pulses were delivered by a pulse generator (Tabor 5061). The 

electrodes of the NOMFET were contacted with a micro-manipulator probe station (Suss 
Microtec  PM-5) placed inside a glove box (MBRAUN) with a strictly controlled nitrogen ambient 

(less than 1 ppm of water vapor and oxygen). The organic  semiconductor (pentacene) being a 
hole conducting material  (p-type semiconductor), the NOMFET is active for negative voltages 

only. We measured the output drain current ID versus time with a train of negative voltage 
pulses applied on the source.    We used a pulse amplitude of - 30 V, a pulse width of 100 ms, 

the pulse frequency was in the range 0.03 to 5 Hz (according to the typical charge/discharge 
time constants of the NPs measured elsewhere (2)).  For the large NOMFET (12 µm) the source 

and gate are short-circuited so as to applied the train of pulses on the gate electrode also. This 
mandatory for an efficient charging and discharging of the NPs at the SiO2/pentacene interface 

through the applied gate oxide field. For the short NOMFET (1 µm and below), the lateral 
electric  field between source and drain is high enough to induce the charging and discharging of 

the NPs, and therefore a constant voltage (-20V) was applied to the gate electrode to turn the 
device on. 
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Supporting text.
In the 1 µm NOMFET, the depressing/facilitating behaviors are now inverted (with respect of the 

frequency of the pulses) - Fig. 1D. This feature comes from the fact that a constant negative 

bias (- 20 V) is applied on the gate which corresponds between two pulses to a charging 

configuration for the NPs. When a larger negative pulse (here - 30 V) is applied on the source, 

the source-gate field tends to discharge the NPs, leading to the observed increase in the drain 

current. The typical  time constant also decreased (compare time scale between Fig. 1C and 

1D), and are now more closer than the one in a biological synapse (Fig. 1B). This is mainly due 

to the reduction of the channel size and a decease in the channel  resistance (higher drain 

current). This feature reduces the time constant R.C, where the capacitance is mainly the 

capacitance of the gold NPs and R the resistance of the organic channel. 

Supporting figure.

Fig. S2. Response of a reference device (no NP incorporated in the pentacene layer) to a train 
of pulses. No synaptic behavior is observed.
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