Replicating the computational functionalities and performances of the brain
remains one of the biggest challenges for the future of information and
communication technologies. Such an ambitious goal requires research efforts
from the architecture level to the basic device level (i.e., investigating the
opportunities offered by emerging nanotechnologies to build such systems).
Nanodevices, or, more precisely, memory or memristive devices, have been
proposed for the implementation of synaptic functions, offering the required
features and integration in a single component. In this paper, we demonstrate
that the basic physics involved in the filamentary switching of electrochemical
metallization cells can reproduce important biological synaptic functions that
are key mechanisms for information processing and storage. The transition from
short- to long-term plasticity has been reported as a direct consequence of
filament growth (i.e., increased conductance) in filamentary memory devices. In
this paper, we show that a more complex filament shape, such as dendritic paths
of variable density and width, can permit the short- and long-term processes to
be controlled independently. Our solid-state device is strongly analogous to
biological synapses, as indicated by the interpretation of the results from the
framework of a phenomenological model developed for biological synapses. We
describe a single memristive element containing a rich panel of features, which
will be of benefit to future neuromorphic hardware systems