In this work, we propose a strategy to sense quantitatively and specifically
cations, out of a single organic electrochemical transistor (OECT) device
exposed to an electrolyte. From the systematic study of six different chloride
salts over 12 different concentrations, we demonstrate that the impedance of
the OECT device is governed by either the channel dedoping at low frequency and
the electrolyte gate capacitive coupling at high frequency. Specific cationic
signatures, which originates from the different impact of the cations behavior
on the poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS)
polymer and their conductivity in water, allow their discrimination at the same
molar concentrations. Dynamic analysis of the device impedance at different
frequencies could allow the identification of specific ionic flows which could
be of a great use in bioelectronics to further interpret complex mechanisms in
biological media such as in the brain.Comment: Full text and supporting informatio