139 research outputs found

    Quantum Transport with Spin Dephasing: A Nonequilibrium Green's Function Approach

    Full text link
    A quantum transport model incorporating spin scattering processes is presented using the non-equilibrium Green's function (NEGF) formalism within the self-consistent Born approximation. This model offers a unified approach by capturing the spin-flip scattering and the quantum effects simultaneously. A numerical implementation of the model is illustrated for magnetic tunnel junction devices with embedded magnetic impurity layers. The results are compared with experimental data, revealing the underlying physics of the coherent and incoherent transport regimes. It is shown that small variations in magnetic impurity spin-states/concentrations could cause large deviations in junction magnetoresistances.Comment: NEGF Formalism, Spin Dephasing, Magnetic Tunnel Junctions, Magnetoresistanc

    Plasmonic Nanopores: Optofluidic Separation of Nano-Bioparticles via Negative Depletion

    Get PDF
    In this chapter, we review a novel “optofluidic” nanopore device enabling label-free sorting of nano-bioparticles [e.g., exosomes, viruses] based-on size or chemical composition. By employing a broadband objective-free light focusing mechanism through extraordinary light transmission effect, our plasmonic nanopore device eliminates sophisticated instrumentation requirements for precise alignment of optical scattering and fluidic drag forces, a fundamental shortcoming of the conventional optical chromatography techniques. Using concurrent optical gradient and radial fluidic drag forces, it achieves self-collimation of nano-bioparticles with inherently minimized spatial dispersion against the fluidic flow. This scheme enables size-based fractionation through negative depletion and refractive-index based separation of nano-bioparticles from similar size particles that have different chemical composition. Most remarkably, its small (4 μm × 4 μm) footprint facilitates on-chip, multiplexed, high-throughput nano-bioparticle sorting using low-cost incoherent light sources

    Nanoporous Metals: From Plasmonic Properties to Applications in Enhanced Spectroscopy and Photocatalysis

    Full text link
    The field of plasmonics is capable of enabling interesting applications in the different wavelength ranges, spanning from the ultraviolet up to the infrared. The choice of plasmonic material and how the material is nanostructured have significant implications for ultimate performance of any plasmonic device. Artificially designed nanoporous metals have interesting material properties including large specific surface area, distinctive optical properties, high electrical conductivity, and reduced stiffness, implying their potentials for many applications. This manuscript reviews the wide range of available nanoporous metals, mainly focusing on their properties as plasmonic materials. While extensive reports on the use and characterization of NPMs exist, a detailed discussion on their connection with surface plasmons and enhanced spectroscopies as well as photocatalysis is missing. Here, we report on different metals investigated, from the most used nanoporous gold to mixed metal compounds, and discuss each of these plasmonic materials suitability for a range of structural design and applications. Finally, we discuss the potentials and limitations of the traditional and alternative plasmonic materials for applications in enhanced spectroscopy and photocatalysis

    Nanoporous Metals: From Plasmonic Properties to Applications in Enhanced Spectroscopy and Photocatalysis

    Get PDF
    The field of plasmonics is capable of enabling interesting applications in different wavelength ranges, spanning from the ultraviolet up to the infrared. The choice of plasmonic material and how the material is nanostructured has significant implications for ultimate performance of any plasmonic device. Artificially designed nanoporous metals (NPMs) have interesting material properties including large specific surface area, distinctive optical properties, high electrical conductivity, and reduced stiffness, implying their potentials for many applications. This paper reviews the wide range of available nanoporous metals (such as Au, Ag, Cu, Al, Mg, and Pt), mainly focusing on their properties as plasmonic materials. While extensive reports on the use and characterization of NPMs exist, a detailed discussion on their connection with surface plasmons and enhanced spectroscopies as well as photocatalysis is missing. Here, we report on different metals investigated, from the most used nanoporous gold to mixed metal compounds, and discuss each of these plasmonic materials' suitability for a range of structural design and applications. Finally, we discuss the potentials and limitations of the traditional and alternative plasmonic materials for applications in enhanced spectroscopy and photocatalysis

    Wallerian-Like Degeneration of Central Neurons After Synchronized and Geometrically Registered Mass Axotomy in a Three-Compartmental Microfluidic Chip

    Get PDF
    Degeneration of central axons may occur following injury or due to various diseases and it involves complex molecular mechanisms that need to be elucidated. Existing in vitro axotomy models are difficult to perform, and they provide limited information on the localization of events along the axon. We present here a novel experimental model system, based on microfluidic isolation, which consists of three distinct compartments, interconnected by parallel microchannels allowing axon outgrowth. Neurons cultured in one compartment successfully elongated their axons to cross a short central compartment and invade the outermost compartment. This design provides an interesting model system for studying axonal degeneration and death mechanisms, with a previously impossible spatial and temporal control on specific molecular pathways. We provide a proof-of-concept of the system by reporting its application to a well-characterized experimental paradigm, axotomy-induced Wallerian degeneration in primary central neurons. Using this model, we applied localized central axotomy by a brief, isolated flux of detergent. We report that mouse embryonic cortical neurons exhibit rapid Wallerian-like distal degeneration but no somatic death following central axotomy. Distal axons show progressive degeneration leading to axonal beading and cytoskeletal fragmentation within a few hours after axotomy. Degeneration is asynchronous, reminiscent of in vivo Wallerian degeneration. Axonal cytoskeletal fragmentation is significantly delayed with nicotinamide adenine dinucleotide pretreatment, but it does not change when distal calpain or caspase activity is inhibited. These findings, consistent with previous experiments in vivo, confirm the power and biological relevance of this microfluidic architecture

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Abstract Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    Quantum Transport with Spin Dephasing: A Nonequilibrium Green\u27s Function Approach

    Get PDF
    A quantum transport model incorporating spin scattering processes is presented using the nonequilibrium Green’s function (NEGF) formalism within the self-consistent Born approximation. This model offers a unified approach by capturing the spin-flip scattering and the quantum effects simultaneously. A numerical implementation of the model is illustrated for magnetic tunnel junction devices with embedded magnetic impurity layers. The results are compared with experimental data, revealing the underlying physics of the coherent and incoherent transport regimes. It is shown that spin scattering processes are suppressed with increasing barrier heights while small variations in magnetic impurity spin-states/concentrations could cause large deviations in junction magnetoresistances

    Quantum transport with spin dephasing: A nonequlibrium Green\u27s function approach

    Get PDF
    A quantum transport model incorporating spin scattering processes is presented using the nonequilibrium Green\u27s function formalism within the self-consistent Born approximation. This model offers a unified approach by capturing the spin-flip scattering and the quantum effects simultaneously. A numerical implementation of the model is illustrated for magnetic tunnel junction devices with embedded magnetic impurity layers. This model seems to explain three experimentally observed features regarding the dependence of the junction magnetoresistances (JMRs) on the barrier thickness, barrier height, and number of magnetic impurities. It is shown that small variations in magnetic impurity spin states and concentrations could cause large deviations in JMRs
    corecore