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A quantum transport model incorporating spin scattering processes is presented using the non-
equilibrium Green’s function (NEGF) formalism within the self-consistent Born approximation.
This model offers a unified approach by capturing the spin-flip scattering and the quantum effects
simultaneously. A numerical implementation of the model is illustrated for magnetic tunnel junction
devices with embedded magnetic impurity layers. The results are compared with experimental
data, revealing the underlying physics of the coherent and incoherent transport regimes. It is
shown that spin scattering processes are suppressed with increasing barrier heights while small
variations in magnetic impurity spin-states/concentrations could cause large deviations in junction
magnetoresistances.

PACS numbers: 72.10.-d, 72.25.-b, 72.25.Rb, 71.70.Gm, 73.43.Qt

I. INTRODUCTION

Quantum transport in spintronic devices is currently
a topic of great interest. Most of the theoretical work
reported so far has been based on the Landauer ap-
proach [1] assuming coherent transport, although a few
authors have included incoherent processes through av-
eraging over a large ensemble of disordered configura-
tions [2–4]. However, it is not straightforward to include
dissipative interactions in such approaches. The non-
equlibrium Green’s function (NEGF) formalism provides
a natural framework for describing quantum transport
in the presence of incoherent and dissipative processes.
Here, a numerical implementation of the NEGF formal-
ism with spin-flip scattering is presented. For magnetic
tunnel junctions (MTJs) with embedded magnetic im-
purity layers, this model is able to capture and explain
three distinctive experimental features reported in the
literature [5–8] regarding the dependence of the junction
magnetoresistances (JMRs) on (1) barrier thickness, (2)
barrier height and (3) the number of magnetic impurities.
The model is quite general and can be used to analyse
and design a variety of spintronic devices beyond the 1-D

∗Electronic address: yanik@purdue.edu

geometry explored in this article.

This article is organized as follows. In the view of ped-
agogical clarity, a heurisic presentation of the NEGF for-
malism with spin dephasing mechanisms is given Sec II
followed by a numerical implementation of the model in
Sec III. Initially (Sec III A) the definitions of device char-
acteristics are presented for impurity free MTJs together
with device parameters benchmarked against experimen-
tal measurements. How to incorporate the spin exchange
scattering mechanisms into the electron transport calcu-
lations is shown (Sec III B), and the model is applied to
MTJ devices with magnetic impurity layers (Sec III C).
Theoretical estimates and experimental measurements
are compared as well in this section (Sec III C), while
a summary of the results is given in Sec IV.

II. MODEL DESCRIPTION

NEGF Method: The problem is partitioned into chan-
nel and contact regions as illustrated in Fig. 1 [9]. Com-
ponents of the partitioned device can be classified in four
categories:

(i) Channel properties are defined by the Hamiltonian
matrix [H ] including the applied bias potential.

(ii) Contacts are included through self-energy matrices
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FIG. 1: Schematic illustration of the device partitioning with
matrices needed for NEGF quantum transport calculations.
Magnetization direction of the drain is defined relative to the
source(∆θ = θR−θL).

[ΣL]/[ΣR] whose anti-hermitian component:

ΓL,R (E) = i
(

ΣL,R (E) − Σ+
L,R (E)

)

, (1)

describes the broadening due to the coupling to the con-
tact. The corresponding inscattering/outscattering ma-
trices are defined as:

Σin
L,R (E) = f0 (E − µL,R)ΓL,R (E) , (2a)

Σout
L,R (E) = [1 − f0 (E − µL,R)]ΓL,R (E) , (2b)

where f0 (E − µL,R) = 1/1 + exp [(E − µL,R)/kBT ] is
the Fermi function for the related contact.

(iii) Electron-electron interactions are incorporated
through the mean field electrostatic potential matrix [U ].

(iv) Incoherent scattering processes in the chan-
nel region are described by in/out-scattering matrices
[

Σin
S

]/

[Σout
S ]. Broadening due to scattering is given by:

ΓS (E) =
[

Σin
S (E) + Σout

S (E)
]

, (3)

from which the self-energy matrix is obtained through a
Hilbert transform:

ΣS (E) =

Re
︷ ︸︸ ︷

1

2π

∫
ΓS (E′)

E′ − E
dE′ −

Im
︷ ︸︸ ︷

i
ΓS (E)

2
. (4)

Eqs. (1-A.13) are the boundary conditions that drive
the coupled NEGF equations [Eqs. (3-8)], where Green’s
function is defined as:

G = [EI − H − U − ΣL − ΣR − ΣS ]−1 , (5)

with the spectral function (analogous to density states):

A = i
[

G − G+
]

= Gn + Gp, (6)

where [Gn]/[Gp] refer the electron/hole correlation func-
tions (whose diagonal elements are the electron/hole den-
sity):

Gn,p = G
[

Σin,out
L + Σin,out

R + Σin,out
S

]

G+. (7)

The in/out-scattering matrices
[

Σin
S

]/

[Σout
S ] are re-

lated to the electron/hole correlation functions [Gn]/[Gp]
through:

Σin,out
S;σiσj

(r, r′; E) =

∫
∑

σk,σl

[

Dn,p
σiσj ;σkσl

(r, r′; !ω)
]

sf
Gn,p
σkσl

(r, r′; E ∓ !ω) d (!ω))

+

∫
∑

σk,σl

[

Dn,p
σiσj ;σkσl

(r, r′; !ω)
]

nsf
Gn,p
σkσl

(r, r′; E) d (!ω). (8)

Here the spin indices (σk,σl) refer to the (2x2) block di-
agonal elements of the on-site electron/hole correlation
function which is related through the [Dn]/[Dp] tensors
to the (σi,σj) spin components of the (2x2) block di-
agonal of the in/out-scattering function. This term can
be interpreted as in the following. The first part de-
scribes the process of spin-flip transitions (subscript sf)
due to the spin-exchange scatterings in the channel re-
gion. The second part denotes the contributions of the
spin-conserving exchange scatterings (subscript nsf for
”no spin-flip”) in the channel region. Both of the con-
tributing parts are previously shown by Appelbaum[10]
using a similar treatment. Here the [Dn]/[Dp] are fourth-

order scattering tensors, describing the spatial corre-
lation and the energy spectrum of the underlying mi-
croscopic spin-dephasing scattering mechanisms. These
scattering tensors can be obtained from the spin scat-
tering hamiltonian. In the Appendix, a second quan-
tized operator based derivation is presented for [Dn]/[Dp]
tensors including the inelastic spin-flip transitions for an
isotropic and point like electron-impurity spin exchange
interaction of type:

Hint ($r) =
∑

Rjj

J
(

$r − $Rjj

)

$σ · $Sjj , (9)



3

where $r/ $Rjj are the spatial coordinates and $σ/$Sjj are the
spin operators for the channel electron/(jj-th) magnetic-
impurity. For point like δ (r − r′) and isotropic exchange
scattering processes, the scattering tensor for the first

term in Eq. (8) corresponding to the spin-flip transitions
can be given in matrix form with the proper indices re-
lating the spin components:

|σkσl〉 →
〈σiσj | ↓

|↑↑〉 |↓↓〉 |↑↓〉 |↓↑〉

[Dn,p (r, r′; !ω)]sf =
∑

ωq

J2N I

〈↑↑|
〈↓↓|
〈↑↓|
〈↓↑|






0 Fu,dδ (ω ± ωq) 0 0
Fd,uδ (ω ± ωq) 0 0 0

0 0 0 0
0 0 0 0






. (10)

Spin-flip transitions of electrons due to the exchange scat-
tering processes can be elastic/inelastic depending on
the degeneracy (!ω = 0/!ω (= 0) of the impurity spin
states. Whereas independetly from the energy difference
between impurity spin states, spin-conserving exchange

scattering processes are elastic and their effect is mainly
broadening of the electronic states. Accordingly, spin
conserving scattering (no spin-flip) tensor in Eq. (8) is
given as:

|σkσl〉 →
〈σiσj | ↓

|↑↑〉 |↓↓〉 |↑↓〉 |↓↑〉

[Dn,p (r, r′; !ω)]nsf =
∑

ωq

1
4J2N I [δ (ω − ωq)]

〈↑↑|
〈↓↓|
〈↑↓|
〈↓↑|






1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1






. (11)

Current is calculated from the self-consistent solution
of the above equations for any terminal ”i”:

Ii =
q

h

∞∫

−∞

trace
([

Σin
i (E)A (E)

]

− [Γi (E) Gn (E)]
)

dE).

(12)

A general solution scheme without going into the de-
tails can be summarized as follows . The matrices listed
under the categories (i) and (ii) are fixed at the outset of
any calculations. While the [U ], [Σin,out

S ] and [ΣS ] ma-
trices under the charging and scattering categories (iii)
and (iv) depend on the correlation and spectral func-
tions requiring an iterative self-consisted solution of the
NEGF Equations [Eqs. (3-8)]. One important thing to
note is that for the numerical implementation presented
in Sec III we do not compute the charging potential [U ]
self-consistently with the charge. The change in tunnel
barriers is neglected and assumed not to influence the
electrostatic potential. This allows one to focus on the
dephasing due to the spin-flip interactions.

III. APPLICATION: MTJs WITH MAGNETIC
IMPURITIES

Electron transport is considered coherent by standard
definitions if through the course of electron’s journey
from source to drain state of nothing else changes. Ac-
cordingly scatterings from ”rigid” impurities are consid-
ered as coherent processes whereas incoherent processes
are mainly viewed as inelastic meaning they involve en-
ergy exchange between the electron and the impurities
through which impurities are set into a jiggling motion.
Yet it’s not necessary that every incoherent process in-
volves an exchange of energy between the electron and
the impurity. A good example to this will be investi-
gated in this part of the paper for electron-impurity spin
exchange scattering processes in MTJs.

A. MTJs: Coherent Regime

In this section, MTJ device fundamentals and the
tunneling transport characteristics are presented in the
absence of magnetic impurities (the coherent regime).
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FIG. 2: Energy band diagram for the model MTJs.

MTJs devices considered here consist of a tunneling bar-
rier (AlOx) sandwiched between two ferromagnets (Co)
with different magnetic coercivities enabling indepen-
dent manipulation of contact magnetization directions
(Fig. 2. Single band tight-binding approximation is
adopted [11] with an effective electron mass (m∗ = me)
in the tunneling region and the ferromagnetic contacts.

Accordingly for constant effective mass throughout
the device, transverse modes can be included using
2-D integrated Fermi functions f2D (Ez − µL,R) =
(

m∗kBT
/

2π–h2
)

ln [1 + exp (µL,R − Ez/kBT )] in
Eq. (A.13) instead of numerically summing parallel
k-components.

The Green’s function of the device in the coherent
regime is simply:

G = (E − H − ΣL − ΣR)−1 , (13)

without any self-consistent solutions where H is Hamil-
tonian of the isolated system, and ΣL/ΣR are the self-
energies due to the source/drain contacts. In real space
for a discrete lattice whose points are located at x = ja,
j being an integer (j = 1 · · ·N), the matrix (E − H − Σ)
can be expressed as:

E − H − ΣL − ΣR =

|1〉 |2〉 |N − 1〉 |N〉

〈1|
〈2|

〈N − 1|
〈N |









EI − α1 − ΣL β · · · 0̄ 0̄
β+ EI − α2 · · · 0̄ 0̄
...

...
. . .

...
...

0̄ 0̄ · · · EI − αN−1 β
0̄ 0̄ · · · β+ EI − αN − ΣR









, (14)

where αn is a 2x2 on-site matrix:

αn =

[

E↑
c,n + 2t + Un 0

0 E↓
c,n + 2t + Un

]

, (15)

and βn = −tI is a 2x2 site-coupling matrix with t =

!2
/

2ma2 and I = (
1 0
0 1

). The left contact self-energy

matrix is nonzero only for the first 2x2 block:

ΣL (1, 1; Ez) =

[

−teik↑
La 0

0 −teik↓
La

]

, (16)

where Ez = E↑,↓
c +UL +2t

(

1 − cos k↑,↓
L a

)

. For the right

contact only the last block is non-zero:

ΣR (N, N, Ez) = Ū+

[

−teik↑
Ra 0

0 −teik
↓
Ra

]

Ū , (17)

where Ū is the unitary transformation operator needed to
obtain right contact self-energy matrix in the left contact
magnetization spin basis set, if the polarization direction
in two contacts differ by an angle ∆θ:

Ũ (∆θ) =

[

cos (∆θ/2) sin (∆θ/2)
− sin (∆θ/2) cos (∆θ/2)

]

. (18)

A theoretical analysis of MTJ devices in the absence of
magnetic impurity layers is presented and compared with
the experimental data [5, 7] for varying tunneling barrier
heights and thicknesses. The parameters used here for
the generic ferromagnetic contacts are the Fermi energy
EF = 2.2 eV and the exchange field ∆ = 1.45 eV [11].
The tunneling region potential barrier [Ubarr] is parame-
terized within the band gaps quoted from the literature
[22, 23], while the charging potential [U ] is neglected due
to the pure tunneling nature of the transport.

Coherent tunneling regime features are obtained by
benchmarking the experimental measurements made in
impurity free tunneling oxide MTJs at small bias volt-
ages. Referring to IF /IAF as the current values for the
parallel/antiparallel magnetizations (∆θ = 0/∆θ = π) of
the ferromagnetic contacts, the JMR is defined as:

JMR = (IF − IAF )/IF . (19)

The dependence of the JMRs on the thickness and
the height of the tunneling barriers is shown in Fig. 3(a)
with an energy resolved analysis [Fig. 3(b)] for different
barrier thicknesses (0.7− 1.4− 2.1 nm). JMR values are
shown to be improving with increasing barrier heights
for all barrier thicknesses, a theoretically predicted [7,
8] and experimentally observed [12–21] feature in MTJs.
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FIG. 3: For impurity free MTJs, (a)thickness dependence
of JMRs for different barrier heights are shown in com-
parison with experimental measurements [12–21] while an
(b)energy resolved analysis of JMR (Ez) (left-axis) and nor-
malized w (Ez) (right-axis) distributions is also presented for
a device with a tunneling barrier height of 1.6 eV. For MTJs
with impurity layers, (c)variation of JMRs for varying bar-
rier thicknesses and interactions strengths are shown together
with (d)an energy resolved analysis. Normalized JMRs are
proven to be thickness independent as displayed in the inset.

The barrier heights obtained here may differ from those
reported in literature [12–21] based on empirical models
[24].

Experiments and theoretical calculations observe de-
terioration of JMRs with increasing barrier thicknesses
[Fig. 3(a)]. Whereas an energy resolved theoretical anal-
ysis shows that energy by energy junction magnetoresis-
tances defined as:

JMR(Ez) = (IF (Ez) − IAF (Ez))/IF (Ez), (20)

remain unchanged [Fig. 3(b)]. This initially counter in-
tuitive observation can be understood by considering the
redistribution of tunneling electron densities over ener-
gies with changing tunneling barrier thicknesses. Defin-
ing w (Ez) as a measure of the contributing weight of the
JMR(Ez), one can show that experimentally measured
JMR is a weighted integral of JMR(Ez)s over energies
Ez :

JMR =

∫

ω (Ez)JMR (Ez) dEz , (21)

where ω (Ez) = IF (Ez)/IF is the energy resolved spin-
continuum current component (weighting function). In
Eq. (21), independently from the barrier thicknesses

JMR (Ez) ratios are constant (solid line in Fig. 3(b)),
while the normalized w (Ez) distributions shifts to-
wards higher energies with increasing barrier thicknesses
(dashed lines in Fig. 3(b)). Hence JMRs, an integral
of the multiplication of the w (Ez) distributions with the
energy resolved JMR (Ez)s, deteriorates with increasing
barrier thicknesses (Eq. (19)).

B. Adding Spin Exchange Scattering

Spin exchange scattering processes are responsible
from the incoherent nature of the tunneling transport
for the model devices considered here. Through this elas-
tic scattering process, the state of nothing else seem to
change if the electron and the impurity spins are con-
sidered as a composite system. Nevertheless, it is an
incoherent process since the state of the impurity has
changed. What makes this process incoherent are the
external forces forcing the impurity spins into local equi-
librium. The incoherent nature of the scattering lies in
the ”information erasure” of the surrounding through
the forces forcing the impurity spins into an unpolarized
(%50 up, %50 down) spin distribution. These external
forces in a closely packed impurity layer can be magnetic
dipole-dipole interactions among the magnetic impuri-
ties or spin relaxation processes coupled with phononic
excitations. Nevertheless the physical origin of the equi-
librium restoring processes is not of our interest (at least
from tunneling electron’s point of view) assuming equilib-
rium restoring processes are fast enough to maintain the
impurity spins in a thermal equilibrium state. Accord-
ingly, NEGF formalism incorporates spin dephasing ef-
fects of the environment into the electron transport prob-
lem through a boundary condition (the spin-scattering
self-energy). As discussed in Sec II, coupling between
the number of available electrons/holes ([Gn]/[Gp]) at
a state and the in/out-flow (

[

Σin
S

]/

[Σout
S ]) to/from that

state is related through the fourth order scattering tensor
[Dn]/[Dp] in Eq. (8).

For the model systems considered here magnetic im-
purity spin states are degenerate (!ω = 0) allowing only
elastic spin-flip transitions. Spin-conserving scattering
processes are also neglected due to their minor effect
on the JMRs. Accordingly, for isotropic and point like
(δ (r − r′)) spin exchange scattering tensor relationship
given in Eq. (8) will simplify to:

Σin,out
S (r, r; E) =

[

Dn,p
σiσj ;σkσl

]

sf
Gn,p
σkσl

(r, r; E) . (22)

[Dn]/[Dp] scattering tensors relate the electron/hole
[Gn]/[Gp] correlation matrices with the (2x2) block diag-
onal elements of

[

Σin
S

]/

[Σout
S ] in/out-scattering matrices

of form:
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Σin,out
S =












(

Σ̄in,out
S

)

1,1
0̄ · · · 0̄

0̄
(

Σ̄in,out
S

)

2,2
· · · 0̄

...
...

. . .
...

0̄ 0̄ · · ·
(

Σ̄in,out
S

)

N,N












, (23)

through the tensor relationship (shown below in matrix
format) for the corresponding lattice site ”j” with mag-
netic impurities:












(

Σin,out
S;↑↑

)

jj(

Σin,out
S;↓↓

)

jj(

Σin,out
S;↑↓

)

jj(

Σin,out
S;↓↑

)

jj












=

[Dn,p]sf

︷ ︸︸ ︷

J2NI






0 Fu,d 0 0
Fd,u 0 0 0
0 0 0 0
0 0 0 0

















(

Gn,p
↑↑

)

jj(

Gn,p
↓↓

)

jj(

Gn,p
↑↓

)

jj(

Gn,p
↓↑

)

jj












,

(24)
where NI is the number of magnetic impurities and
Fu/Fd represents fractions of spin-up/spin-down impu-
rities for an uncorrelated ensemble (Fu + Fd = 1).

This tensor relationship can be understood heuristi-
cally from elementary arguments. The in/out-scattering
into spin-up component is proportional to the density of
the spin-down electrons/holes times the number of spin-
up impurities, NIFu :

(

Σin,out
S,↑↑

)

jj
= J2NIFu

(

Gn,p
↓↓

)

jj
. (25)

Similarly, the in/out-scattering into spin-down com-
ponent is proportional to the density of the spin-up elec-
trons/holes times the number of spin-down impurities,
NIFd :

(

Σin,out
S,↓↓

)

jj
= J2NIFd

(

Gn,p
↑↑

)

jj
. (26)

C. Incoherent Regime: Results

The incoherent tunneling regime device characteristics
in the presence of magnetic impurities is studied for a
fixed barrier height Ubarr = 1.6 eV [Fig. 3 (c)] with
changing barrier thicknesses and electron-impurity spin
exchange interactions (J2NI = 0 − 6 eV). A nonlinear
deterioration of JMRs with increasing spin-exchange in-
teractions is observed at all barrier thicknesses due to
the mixing of independent spin-channels [5, 6] while the
normalized JMRs are proven to be thickness indepen-
dent (inset). This observation is attributed to the elastic
nature of the spin exchange interactions yielding a total
drop in JMR (Ez) values at all Ez energies in Eq. (19)

while preserving the normalized ω (Ez) carrier distribu-
tions [Fig. 3(d)].

Further analysis shows that ”normalized” JMRs of
the MTJs with magnetic impurity layers converges to
that of the impurity free (J2NI = 0) MTJs with increas-
ing barrier heights [Fig. 4(a)]. This observation demon-
strates that the spin channel mixing of the exchange scat-
tering processes are suppressed with increasing barrier
heights. This is in agreement with previous predictions
for impurity free MTJs [7, 7]. Another interesting feature
is that ”normalized” JMRs deteriorates with increasing
spin-dephasing strenghts (J2NI) independently from the
tunneling barrier heights [Fig. 4(b)]. This general trend
can be shown by mapping the ”normalized” JMRs into
a single universal curve using a tunneling barrier height
dependent scaling constant c (Ubarr) (inset in Fig. 4(b)).
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deteriorates with increasing spin-dephasing strengths inde-
pendently from the tunneling barrier heights. This general
trend can be scaled to a single universal curve (inset). Ex-
perimental data taken at 77K and 300K is compared with
theoretical analysis in the presence of (c) palladium and (d)
cobalt magnetic impurities with increasing impurity concen-
trations.
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This allows us to choose a particular value of barrier
height [Ubarr = 1.6eV ] and adjust a single parameter
J to fit our NEGF calculations [Fig. 4(c-d)] with ex-
perimental measurements obtained from δ-doped MTJs
[5]. Submonolayer impurity thicknesses given in the mea-
surements are converted into number of impurities using
material concentrations of Pd/Co impurities and device
cross sections (6 × 10−4 cm2) [5].

Close fitting to the experimental data are observed at
77K [Fig. 4(c-d)] using physically reasonable exchange
coupling constants of J = 2.63µeV/1.41µeV for devices
with Pd/Co impurities [25]. However, experimentally ob-
served temperature dependence of normalized JMR ra-
tios can not be accounted for by our model calculations.
Broadenings of the electrode Fermi distributions due to
changing temperatures from 77K to 300K seem to yield
variations in normalized JMR ratios within a linewidth.
As a result, different J exchange couplings are used in
order to match the experimental data taken at 300K.

For Pd doped MTJs, a relatively small variation in J
exchange couplings is needed (J300/J77 = 1.16) in order
to match the experimental data at 300K. This small tem-
perature dependence could be due to the presence of some
secondary mechanisms not included in our calculations.
One such mechanism reported in literature includes the
presence of impurity-assisted conductance contribution
through the defects (possibly created by the inclusion of
magnetic impurities within the barrier) which is known to
be strongly temperature dependent [26]. In fact, the con-
tribution of the impurity-assistant conductance is pro-
portional with the impurity concentrations in accordance
with the experimental measurements [Fig. 4(c)].

On the contrary, for Co doped MTJs, there’s a clear
distinction for normalized JMR ratios at different tem-
peratures [Fig. 4(d)] which can not be justified by the
presence of secondary mechanisms. Fitting these large
deviations require large variations in J exchange coupling
parameters [J300/J77 = 1.73] We propose this to be a re-
sult of thermally driven low-spin/high-spin phase transi-
tion [27, 28], since the oxidation state of the cobalt atoms
can be in Co+2 (S = 3/2, high-spin) or Co+3 (S = 0,
low-spin) state or partially in both of the states depend-
ing on the oxidation environment. Such thermally driven
low-spin/high-spin phase transitions for metal-oxides has
been predicted by theoretical calculations and observed
in previous experimental studies [27, 28]. These phase
transitions have not been discussed in MTJs community
in connection with possible scattering factors determin-
ing the temperature dependence of JMRs. Although
from the avaliable experimental data it’s not possible to
make a decisive conclusion in this direction, given the
non-linear dependence of JMRs on magnetic impurity
states in our calculations, we believe it’s important to
point out this possibility here.

IV. SUMMARY

Summary: A NEGF based quantum transport model
incorporating spin-flip scattering processes within the
self-consistent Born approximation is presented. Spin-
flip scattering and quantum effects are simultaneously
captured. Spin scattering operators are derived for the
specific case of electron-impurity spin-exchange interac-
tions and the formalism is applied to spin dependent elec-
tron transport in MTJs with magnetic impurity layers.
The theory is benchmarked against experimental data in-
volving both coherent and incoherent transport regimes.
JMRs are shown to decrease both with barrier thickness
and with spin-flip scattering but our unified treatment
clearly brings out the difference in the underlying physics
[Fig. 3]. The deteriorating effect of the magnetic impuri-
ties on JMR ratios diminishes with increasing tunneling
barrier heights [Fig. 4(a)]. Our numerical results show
that both barrier height and the exchange interaction
constant J can be subsumed into a single parameter that
can explain a variety of experiments [Fig. 4]. Interesting
differences between devices having Pd and Co impuri-
ties are pointed out, which could be signatures of low-
spin/high-spin phase transitions in cobalt oxides. Small
differences in spin-states/concentrations of magnetic im-
purities are shown to cause large deviations in JMRs.
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APPENDIX: SPIN DEPHASING SELF ENERGY

In the following, scattering tensors are derived for
point like electron-impurity spin exchange interactions
by using a second quantized operator treatment involv-
ing both electron and impurity spin states. This ap-
proach should give correct results at least to the first or-
der, so-called self-consistent Born approximation. This
self-energy matrix treatment has been successfully ap-
plied for the electron-phonon and electron-electron scat-
tering processes in literature [9, 29] although according
to our knowledge it has not been applied to spin de-
phasing processes except through a heuristic approach for
elastic (!ω = 0) impurity scattering processes by Datta
[30]. Here self energy treatment is extended to incorpo-
rate inelastic spin scattering processes (!ω (= 0) as well
following previous second quantized operator treatments
[9, 31, 32]. A typo for the exchange scattering tensor
given in Eq. (A.9b) in [30] is also corrected here.
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The in/out-scattering function representing the corre-
lation of the source terms can be expressed as [9]:

Σin
ij (r, r′; t, t′) ≡

〈

S+
j (r′, t′)Si (r, t)

〉

. (A.1a)

Σout
ij (r, r′; t, t′) ≡

〈

Si (r, t)S+
j (r′, t′)

〉

. (A.1b)

Here the subscripts correspond to spin states in electron
subspace. Through Jordan-Wigner transformation, sin-
gle spins can be thought as an empty or singly occupied
fermion state:

|↑〉 ≡ a+ |0〉 , (A.2a)

|↓〉 ≡ |0〉 , (A.2b)

where the creation/annihilation operators are:

a+ = σ+ =

[

0 eiωet

0 0

]

, (A.3a)

a = σ− =

[

0 0
e−iωet 0

]

. (A.3b)

Accordingly, source terms are defined as:

Si (r, t) =
∑

k

τik (r, t) ak (t), (A.4a)

S+
j (r′, t′) =

∑

l

τ∗jl (r′, t′) a+
l (t′)

=
∑

l

τ+
lj (r′, t′) a+

l (t′), (A.4b)

where for a given spin scattering exchange interaction
Hamiltonian Hint:

τik (r, t) = 〈i|Hint (r, t) |j〉 , (A.5a)

τjl (r′, t′) = 〈i|H+
int (r′, t′) |j〉 . (A.5b)

For point like (δ (r − r′)) scattering processes, substitut-
ing source term Eq. (A.4) into Eq. (A.1) will yield:

Σin
ij (t, t′) =

〈

∑

k

τik (t)
[

a+
l (t) ak (t′)

]∑

l

τ+
lj (t′)

〉

.

(A.6)
Fourier transform of this relation will simplify further if
the electron spin states are degenerate (!ωe = 0):

Σin
ij (E) =

〈

∑

k

τik (t)
∑

l

τ+
lj (t′)

〉

FT

Gn
kl (E) , (A.7)

where Gn
ik (E) =

〈

a+
k (t′) ai (t)

〉

FT
. Accordingly [Dn(E)]

and [Dp] are given as:

Dn
ij;kl (!ω) =

〈

∑

k

τik (t)
∑

l

τ+
lj (t′)

〉

FT

=
〈

〈i|Hint(t) |k〉 〈l|H
+
int (t′) |j〉

〉

FT
, (A.8a)

Dp
ij;kl (!ω) =

〈

∑

k

τ+
ik (t)

∑

l

τlj (t′)

〉

FT

=
〈

〈i|H+
int(t) |k〉 〈l|Hint (t′) |j〉

〉

FT
, (A.8b)

where exchange scattering Hamiltonian [Eq. (9)] is ex-
pressed in terms of second quantized operators as:

Hint (r, t) = Jδ
(

$r − $R
)
[
1

2
aS+ (t) +

1

2
a+S− (t) +

(

a+a −
1

2

)

Sz (t)

]

. (A.9)

Substituting the interaction Hamiltonian from Eq. (A.9) into Eq. (A.10) will yield:
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|σkσl〉 →
〈σiσj | ↓

|↑↑〉 |↓↓〉 |↑↓〉 |↓↑〉

Dn (!ω)
/

J2 =

〈↑↑|
〈↓↓|
〈↑↓|
〈↓↑|






〈Sz (t)Sz (t′)〉 〈S+ (t)S− (t′)〉 〈S+ (t)Sz (t′)〉 〈Sz (t)S− (t′)〉
〈S− (t)S+ (t′)〉 〈Sz (t)Sz (t′)〉 − 〈Sz (t)S+ (t′)〉 − 〈S− (t)Sz (t′)〉
〈S− (t)Sz (t′)〉 − 〈Sz (t)S− (t′)〉 − 〈Sz (t)Sz (t′)〉 〈S− (t)S− (t′)〉
〈Sz (t)S+ (t′)〉 − 〈S+ (t)Sz (t′)〉 〈S+ (t)S+ (t′)〉 − 〈Sz (t)Sz (t′)〉






FT

, (A.10a)

|σkσl〉 →
〈σiσj | ↓

|↑↑〉 |↓↓〉 |↑↓〉 |↓↑〉

Dp (!ω)
/

J2 =

〈↑↑|
〈↓↓|
〈↑↓|
〈↓↑|






〈Sz (t)Sz (t′)〉 〈S− (t)S+ (t′)〉 〈Sz (t)S+ (t′)〉 〈S− (t)Sz (t′)〉
〈S+ (t)S− (t′)〉 〈Sz (t)Sz (t′)〉 − 〈S+ (t) Sz (t′)〉 − 〈Sz (t)S− (t′)〉
〈Sz (t)S− (t′)〉 − 〈S− (t)Sz (t′)〉 − 〈Sz (t) Sz (t′)〉 〈S− (t)S− (t′)〉
〈S+ (t)Sz (t′)〉 − 〈Sz (t)S+ (t′)〉 〈S+ (t)S+ (t′)〉 − 〈Sz (t)Sz (t′)〉






FT

, (A.10b)

where the spin-operators are defined in the impurity spin-
subspace as:

S+ = d+ =

[

0 eiωt/!

0 0

]

, (A.11a)

S− = d =

[

0 0
e−iωt/! 0

]

, (A.11b)

Sz = d+d −
1

2
=

1

2

[

1 0
0 −1

]

. (A.11c)

Operator expectation values can be obtained by 〈A〉 =
trace (ρA). For a given impurity density matrix of the
form (Fu+Fd=1):

ρ = NI

[

Fu 0
0 Fd

]

, (A.12)

where NI being total number of impurities, the desired
quantities [Dn]/[Dp] are obtained by evaluating the ex-
pectation values of the operators in Eqs. (A.10a) and
(A.10b): Only non-zero elements are obtained as:

〈Sz (t)Sz (t′)〉 =
1

4
, (A.13a)

〈S+ (t)S− (t′)〉 = Fueiω(t−t′), (A.13b)

〈S− (t)S+ (t′)〉 = Fde
iω(t′−t). (A.13c)

Finally, for a given impurity density matrix
[Eq (A.12)], [Dn]/[Dp] tensors are obtained as:

|σkσl〉 →
〈σiσj | ↓

|↑↑〉 |↓↓〉 |↑↓〉 |↓↑〉

Dn (t, t′) =
∑

q
J2N I

〈↑↑|
〈↓↓|
〈↑↓|
〈↓↑|







1/4 Fueiω(t−t′) 0 0

Fde
iω(t′−t) 1/4 0 0
0 0 −1/4 0
0 0 0 −1/4







, (A.14a)

|σkσl〉 →
〈σiσj | ↓

|↑↑〉 |↓↓〉 |↑↓〉 |↓↑〉

Dp (t, t′) =
∑

q
J2N I

〈↑↑|
〈↓↓|
〈↑↓|
〈↓↑|







1/4 Fde
iω(t′−t) 0 0

Fueiω(t−t′) 1/4 0 0
0 0 −1/4 0
0 0 0 −1/4







, (A.14b)

Once the fourier transforms are taken this equation will simplify to Eq (??) and Eq (11). For the calcula-
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tions done in the article, diagonal elements not leading to
spin-dephasing are omitted due to their negligible effect
on JMR ratios. In this case [Dn]/[Dp] scattering ten-

sors simplifies to a form (Eq. (24)) which can be under-
stood from simple common-sense arguments (Eqs. (25)
and (26)).
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