32,642 research outputs found
Insights into the quark-gluon vertex from lattice QCD and meson spectroscopy
By comparing successful quark-gluon vertex interaction models with the
corresponding interaction extracted from lattice-QCD data on the quark's
propagator, we identify common qualitative features which could be important to
tune future interaction models beyond the rainbow ladder approximation.
Clearly, a quantitative comparison is conceptually not simple, but
qualitatively the results suggest that a realistic interaction should be
relatively broad with a strong support at about ~GeV and
infrared-finite
Recommended from our members
Artificial Intelligence in Gastrointestinal Endoscopy.
Artificial intelligence (AI) is rapidly integrating into modern technology and clinical practice. Although in its nascency, AI has become a hot topic of investigation for applications in clinical practice. Multiple fields of medicine have embraced the possibility of a future with AI assisting in diagnosis and pathology applications. In the field of gastroenterology, AI has been studied as a tool to assist in risk stratification, diagnosis, and pathologic identification. Specifically, AI has become of great interest in endoscopy as a technology with substantial potential to revolutionize the practice of a modern gastroenterologist. From cancer screening to automated report generation, AI has touched upon all aspects of modern endoscopy. Here, we review landmark AI developments in endoscopy. Starting with broad definitions to develop understanding, we will summarize the current state of AI research and its potential applications. With innovation developing rapidly, this article touches upon the remarkable advances in AI-assisted endoscopy since its initial evaluation at the turn of the millennium, and the potential impact these AI models may have on the modern clinical practice. As with any discussion of new technology, its limitations must also be understood to apply clinical AI tools successfully
A Low Complexity Partial Transmit Sequence for Peak to Average Power Ratio Reduction in OFDM Systems
Partial transmit sequence (PTS) is one of the most important techniques for reducing the peak to average power ratio (PAPR) in OFDM systems. This paper presents a low complexity PTS scheme by applying a new phase sequence. Unlike the conventional PTS which needs several inverse fast Fourier transform (IFFT) operations, the proposed technique requires half IFFT operations only at the expense of slight PAPR degradation. Simulation and results are examined with QPSK modulation and OFDM signal and power amplifier with memory effects
Effect of plant spacing and fertility level on leaf area variation at different phenological stages of cape gooseberry (Physalisperuviana L.) grown in sodic soil
Vegetative and reproductive growth in cape gooseberry (Physalisperuviana L.) proceed concomitantly during the greater part of the life cycle thereby foliar traits (e.g. leaf area) become important in photosynthetic action of the plant. In present study, the leaf area variation in cape gooseberry was studied at five phenological stages i.e. pre-flowering (30 DAT), start of flowering (60 DAT), early fruiting (120 DAT), peak fruiting (180 DAT) and late fruiting (240 DAT), grown at three spacings (60 × 75, 75 × 75 and 75 × 90 cm) and four NPK levels (control, 60:40:40, 80:60:60 and 100:80:80 kg ha-1). Leaf area increased from per-flowering (73.51 cm2) to start of flowering (82.26 cm2) and thereafter, it was decreased gradually at later stages i.e. early fruiting (79.17 cm2), peak fruiting (73.15 cm2) and late fruiting (60.21 cm2). Spacing had no significant effect on leaf area at pre-flowering and start of the flowering, but at later stages, widest spacing (75 × 90 cm) exhibited significantly maximum leaf area at early fruiting (82.44 cm2), peak fruiting (78.22 cm2) and late and fruiting (65.31 cm2). Leaf area increased due to increased NPK levels with maximum values under 100:80:80 kg NPK ha-1 at all the phenological stages: pre-flowering (78.99 cm2), start of flowering (90.97 cm2), early fruiting (88.47 cm2), peak fruiting (80.74 cm2) and late fruiting (67.22 cm2). Spacing × NPK Interactions was significant only at peak fruiting and late fruiting stages with maximum leaf area (75.22 and 71.02 cm2, respectively) at 75 × 90 cm + NPK @ 100:80:80 kg ha-1. These findings can be further helpful in leaf sclerophylly studies in cape gooseberry
Design and Implementation of Position Estimator Algorithm on Voice Coil Motor
Voice Coil Motors (VCMs) have been an inevitable element in the mechanisms that have been used for precise positioning in the applications like 3D printing., micro-stereolithography., etc. These voice coil motors translate in a linear direction and require a high accuracy position sensor that amounts for a major part in the budget. In this research work., an effort has been made to design and implement an algorithm that would predict the displacement of VCM and eliminate the need of high cost sensors. VCM was integrated with dSPACE DS1104 R&D controller via linear current amplifier (LCAM) which acts as a driver circuit for VCM. Sine input was given to VCM with various amplitude and frequency and the corresponding displacement is measured by using linear variable differential transformer (LVDT). The position estimator algorithm is also implemented at the same time on VCM and its output is compared with that of LVDT. It is observed that there is 97.8 % accuracy in between algorithm output and LVDT output. Further., PID controller is used in integration with the novel algorithm to minimize the error. The estimator algorithm is tested for various amplitudes and frequencies and it is found that it has a very good agreement of 99.2% with the actual displacement measured with the help of LVDT
Studies on production potential of cape gooseberry (Physalis peruviana L.) in sodic soil under varying agronomic manipulations
Present study aimed to evaluate the production potential of cape gooseberry (Physalis peruviana L.) in sodic soil (pH 8.56) under varying plant spacing and soil fertility levels. The spacing treatments were S1-75 x 60 cm, S2-75 x 75 cm and S3-90 x 75 cm, while native soil fertility was manipulated through the application of NPK fertilizers i.e. F0-control (no NPK fertilizers), F1 - 60:40:40, F2 - 80:60:60, and F3 - 100:80:80 kg NPK ha-1. Two year’s data from the study revealed that spacing and NPK treatment had significant effect on vegetative growth and fruit yield during both the years. Closest spacing (75 x 60 cm) resulted tallest plants (103.41 and 100.35 cm) and maximum fruit yield (86.69 and 83.56 q ha-1), but this treatment was statistically at par with 75 x 75 cm spacing. Widest spacing (90 x 75cm) resulted maximum number of branches (34.14 and 32.49 plant-1), number of leaves (167.31 and 162.70 plant-1) and average fruit weight (9.26 and 9.18 g), but was statistically at par with 75 x 75 cm spacing. Amongst the fertilizer treatments, application of NPK @100:80:80 kg ha-1 resulted maximum plant height (114.88 and 11.65 cm), number of branches (35.78 and 34.82 plant-1), number of leaves (174.82 and 172.55 plant-1), fruit weight (9.62 and 9.57 g) and fruit yield (101.08 and 98.08 q ha-1). Biochemical quality of fruits (TSS, ascorbic acid, acidity, and reducing, non-reducing and total sugars) was increased due to increased fertility level and recorded maximum with the application of 100:80:80 kg NPK ha-1. These findings will be helpful in exploring cape gooseberry cultivation in sodic soils (pH 8.56) through suitable agronomic manipulations in plant spacing and soil fertility levels
Buckling instability for a charged and fluctuating semiflexible polymer
In this article we address the problem of Euler's buckling instability in a
charged semi-flexible polymer that is under the action of a compressive force.
We consider this instability as a phase transition and investigate the role of
thermal fluctuations in the buckling critical force. By performing molecular
dynamic simulations, we show that the critical force decreases when the
temperature increases. Repulsive electrostatic interaction in the finite
temperature is in competition with thermal fluctuations to increase the
buckling threshold
Shear viscosity of a highly excited string and the black hole membrane paradigm
Black hole membrane paradigm states that a certain viscous membrane seems to
be sitting on a stretched horizon of a black hole from the viewpoint of a
distant observer. We show that the shear viscosity of the fictitious membrane
can be reproduced by a highly excited string covering the stretched horizon
except for a numerical coefficient.Comment: 22 pages, no figure, minor correction
- …