6 research outputs found

    Bagarius bagarius, and Eichhornia crassipes are suitable bioindicators of heavy metal pollution, toxicity, and risk assessment

    No full text
    Abstract Water quality index (WQI) of Narora channel and health of endemic fish Bagarius bagarius and plant Eichhornia crassipes, district Bulandshahar, Uttar Pradesh, India were studied. Among the physicochemical properties of water, pH, D.O, Cr, Fe, Ni, and Cd were above the recommended standards. These factors lead to high WQI (4124.83), indicating poor quality and not suitable for drinking and domestic usage. In fish tissues, the highest metal load was reported in the liver (58.29) and the lowest in the kidney (33.73). Heavy metals also cause a lowering of condition indices. As expected, decreased serum protein (− 63.41%) and liver glycogen (− 79.10%) were recorded in the exposed fish. However, blood glucose (47.22%) and serum glycogen (74.69%) showed elevation. In the plant, roots (21.50) contained the highest, and leaves (16.87) had the lowest heavy metal load. Bioaccumulation factor (BAF) > 1, indicates hyperaccumulation of all metals. E. crassipes roots showed the highest translocation factor (TF) > 1 for Ni (1.57) and Zn (1.30). The high mobility factor (MF) reflected the suitability of E. crassipes for phytoextraction of Mn, Cd, Zn, Fe, Ni, and Cu. Moreover, Bagarius sp. consumption could not pose any non-cancer risk. Although, lower cancer risk can be expected from Ni and Cr

    Biocidal action, characterization, and molecular docking of Mentha piperita (Lamiaceae) leaves extract against Culex quinquefasciatus (Diptera: Culicidae) larvae.

    No full text
    Mosquitoes are found in tropical and subtropical areas and are the carriers of a variety of diseases that are harmful to people's health. e.g., malaria, filariasis, chikungunya, dengue fever, etc. Although several insecticides are available, however, due to insect resistance and environmental hazards, more eco-friendly chemicals are needed for insect control. So, the current research was planned to explore the prospective of Mentha piperita to be used for the formulation of larvicides against mosquito Culex quinquefasciatus. The ethanolic and water extracts of M. piperita leaves were prepared using the soxhlet apparatus. The extracts were dried and subjected to prepare five concentrations multiple of 80 ppm. Each concentration was applied for its larvicidal efficacy setting an experiment (in triplicate) in plastic containers of 1000 ml with extracts, 30 larvae of all four instars separately, and fed with dog biscuits along with controls. Observations were taken after each 12 hrs. till 72 hrs. The antioxidant perspective of M. piperita was determined by DPPH radical scavenging, total antioxidant capacity, and ferric reducing power assays. Using brine shrimp lethality bioactivity, the cytotoxic study was perceived. Standard techniques were used to classify the M. piperita extract using preliminary qualitative and quantitative phytochemicals, UV-Vis spectroscopy, FT-IR, and GC-MS analysis. M. piperita ethanolic leaves extract after 24 hrs. of exposure in 400 ppm showed 93% (LC50 = 208.976 ppm) mortality in ethanolic extract and 80% (LC90 = 246.900 ppm) in the water extract. In treated larvae, biochemical examination revealed a substantial (P<0.05) decrease in proteins, carbohydrates, and fat contents. The ethanol extract of M. piperita was the most efficient, killing brine shrimp nauplii in 50% to 90% of cases. TAC (125.4 3.5gAAE/mg DW) and FRP (378.1 1.0gAAE/mg DW) were highest in the ethanolic extract of M. piperita. The presence of medicinally active components such as alkaloids, carbohydrates, flavonoids, and others in M. piperita leaves extract in ethanol was discovered. The UV-Vis spectrum showed two peaks at 209.509 and 282.814 nm with the absorption of 2.338 and 0.796 respectively. The FT-IR consequences exhibited the occurrence of alcohols, alkanes, aldehyde, aromatic rings, ether linkage, ester, and halo- compounds. The GC-MS analysis according to peak (%) area and retention time showed ten phytochemicals consisting of six major and four minor compounds. Among all the compounds, 1, 2-benzene dicarboxylic acid, and 3-ethyl-5, 5-dimethyl -6-phenyl bound well to the NS3 protease domain with PDB ID: 2FOM. Hence, for the prevention of health hazards and mosquito control, M. Piperita is a potential source of chemicals for insecticide formulation

    Simulated Modelling, Design, and Performance Evaluation of a Pilot-Scale Trickling Filter System for Removal of Carbonaceous Pollutants from Domestic Wastewater

    No full text
    The aim of the present study is to assess the wastewater treatment efficiency of a low-cost pilot-scale trickling filter (TF) system under a prevailing temperature range of 12 °C–38 °C. Operational data (both influent and effluent) for 330 days were collected from the pilot-scale TF for various physicochemical and biological parameters. Average percentage reductions were observed in the ranges of 52–72, 51–73, 61–81, and 74–89% for BOD5, COD, TDS, and TSS, respectively, for the whole year except the winter season, where a 74–88% reduction was observed only for TSS, whilst BOD5, COD, and TDS demonstrated reductions in the ranges of 13–50, 13–49, and 23–61%, respectively. Furthermore, reductions of about 43–55% and 57–86% in fecal coliform count were observed after the 1st and 6th day of treatment, respectively, throughout study period. Moreover, the pilot-scale TF model was based on zero-order kinetics calibrated at 20 °C using experimental BOD5 data obtained in the month of October to calculate the k20 value, which was further validated to determine the kt value for each BOD5 experimental setup. The model resulted in more accurate measurements of the pilot-scale TF and could help to improve its ability to handle different types of wastewater in the future

    Minocycline-Derived Silver Nanoparticles for Assessment of Their Antidiabetic Potential against Alloxan-Induced Diabetic Mice

    No full text
    Diabetes is a life-threatening disease, and chronic diabetes affects parts of the body including the liver, kidney, and pancreas. The root cause of diabetes is mainly associated with oxidative stress produced by reactive oxygen species. Minocycline is a drug with a multi-substituted phenol ring and has shown excellent antioxidant activities. The objective of the present study was to investigate the antidiabetic potential of minocycline-modified silver nanoparticles (mino/AgNPs) against alloxan-induced diabetic mice. The mino/AgNPs were synthesized using minocycline as reducing and stabilizing agents. UV-visible, FT-IR, X-ray diffraction (XRD), and transmission electron microscopy (TEM) were applied for the characterization of mino/AgNPs. A 2,2-diphenyl-1-picrylhydrazyl free radical scavenging assay was conducted to determine the antioxidant potential of newly synthesized mino/AgNPs. The results revealed that the mino/AgNPs showed higher radical scavenging activity (IC50 = 19.7 µg/mL) compared to the minocycline (IC50 = 26.0 µg/mL) and ascorbic acid (IC50 = 25.2 µg/mL). Further, mino/AgNPs were successfully employed to examine their antidiabetic potential against alloxan-induced diabetic mice. Hematological results showed that the mice treated with mino/AgNPs demonstrated a significant decrease in fasting blood glucose level and lipid profile compared to the untreated diabetic group. A histopathological examination confirmed that the diabetic mice treated with mino/AgNPs showed significant recovery and revival of the histo-morphology of the kidney, central vein of the liver, and islet cells of the pancreas compared to the untreated diabetic mice. Hence, mino/AgNPs have good antidiabetic potential and could be an appropriate nanomedicine to prevent the development of diabetes

    Maslinic acid as an effective anticancer agent

    No full text
    Maslinic acid (2α,3β-dihydroxyolean-12-en-28-oic acid) is a naturally occurring pentacyclic triterpenic compound. Maslinic acid is gradually gaining attention as an excellent pharmacologically active product because of its premium biological properties. In this review we will focus on chemopreventive properties of Maslinic acid against different cancers. Seemingly, available data is limited and we have yet to unravel how Maslinic acid therapeutically targeted oncogenic cell signal transduction cascades in different cancers. Moreover, there are visible knowledge gaps about the ability of Maslinic acid to modulate oncogenic and tumor suppressor microRNAs in various cancers
    corecore