4 research outputs found

    A Substellar Common Proper Motion Companion to the Pleiad HII 1348

    Get PDF
    We announce the identification of a proper motion companion to the star HII 1348, a K5V member of the Pleiades open cluster. The existence of a faint point source 1.1arcsec away from HII 1348 was previously known from adaptive optics imaging by Bouvier et al. However, because of a high likelihood of background star contamination and in the absence of follow-up astrometry, Bouvier et al. tentatively concluded that the candidate companion was not physically associated with HII 1348. We establish the proper motion association of the pair from adaptive optics imaging with the Palomar 5m telescope. Adaptive optics spectroscopy with the integral field spectrograph OSIRIS on the Keck 10m telescope reveals that the companion has a spectral type of M8\pm1. According to substellar evolution models, the M8 spectral type resides within the substellar mass regime at the age of the Pleiades. The primary itself is a known double-lined spectroscopic binary, which makes the resolved companion, HII 1348B, the least massive and widest component of this hierarchical triple system and the first substellar companion to a stellar primary in the Pleiades.Comment: accepted by Ap

    Design of a compact all-permanent magnet ECR ion source injector for ReA at the MSU NSCL

    Full text link
    The design of a compact all-permanent magnet electron cyclotron resonance (ECR) ion source injector for the ReAccelerator Facility (ReA) at the Michigan State University (MSU) National Superconducting Cyclotron Laboratory (NSCL) is currently being carried out. The ECR ion source injector will complement the electron beam ion trap (EBIT) charge breeder as an off-line stable ion beam injector for the ReA linac. The objective of the ECR ion source injector is to provide continuous-wave beams of heavy ions from hydrogen to masses up to 136Xe within the ReA charge-to-mass ratio (Q/A) operational range from 0.2 to 0.5. The ECR ion source will be mounted on a high-voltage platform that can be adjusted to obtain the required 12 keV/u injection energy into a room temperature radio-frequency quadrupole (RFQ) for further acceleration. The beam line consists of a 30 kV tetrode extraction system, mass analyzing section, and optical matching section for injection into the existing ReA low energy beam transport (LEBT) line. The design of the ECR ion source and the associated beam line are discussed

    Method of phase space beam dilution utilizing bounded chaos generated by rf phase modulation

    No full text
    This paper explores the physics of chaos in a localized phase-space region produced by rf phase modulation applied to a double rf system. The study can be exploited to produce rapid particle bunch broadening exhibiting longitudinal particle distribution uniformity. Hamiltonian models and particle-tracking simulations are introduced to understand the mechanism and applicability of controlled particle diffusion. When phase modulation is applied to the double rf system, regions of localized chaos are produced through the disruption and overlapping of parametric resonant islands and configured to be bounded by well-behaved invariant tori to prevent particle loss. The condition of chaoticity and the degree of particle dilution can be controlled by the rf parameters. The method has applications in alleviating adverse space-charge effects in high-intensity beams, particle bunch distribution uniformization, and industrial radiation-effects experiments
    corecore