18 research outputs found

    Light element variations within the different age-metallicity populations in the nucleus of the Sagittarius dwarf

    Get PDF
    The cluster M54 lies at the centre of the Sagittarius dwarf spheroidal galaxy, and therefore may be the closest example of a nuclear star cluster. Either in-situ star formation, inspiralling globular clusters, or a combination have been invoked to explain the wide variety of stellar sub-populations in nuclear star clusters. Globular clusters are known to exhibit light element variations, which can be identified using the photometric construct called a chromosome map. In this letter, we create chromosome maps for three distinct age-metallicity sub-populations in the vicinity of M54. We find that the old, metal-poor population shows the signature of light element variations, while the young and intermediate-age metal rich populations do not. We conclude that the nucleus of Sagittarius formed through a combination of in-situ star formation and globular cluster accretion. This letter demonstrates that properly constructed chromosome maps of iron-complex globular clusters can provide insight into the formation locations of the different stellar populations.Comment: Accepted by MNRAS Letter

    Constraining nuclear star cluster formation using MUSE-AO observations of the early-type galaxy FCC 47

    Get PDF
    Context. Nuclear star clusters (NSCs) are found in at least 70% of all galaxies, but their formation path is still unclear. In the most common scenarios, NSCs form in-situ from the galaxy's central gas reservoir, through the merging of globular clusters (GCs), or through a combination of both. Aims: As the scenarios pose different expectations for angular momentum and stellar population properties of the NSC in comparison to the host galaxy and the GC system, it is necessary to characterise the stellar light, NSC, and GCs simultaneously. The large NSC (r_eff = 66 pc) and rich GC system of the early-type Fornax cluster galaxy FCC 47 (NGC 1336) render this galaxy an ideal laboratory to constrain NSC formation. Methods: Using Multi Unit Spectroscopic Explorer science verification data assisted by adaptive optics, we obtained maps for the stellar kinematics and stellar-population properties of FCC 47. We extracted the spectra of the central NSC and determined line-of-sight velocities of 24 GCs and metallicities of five. Results: The galaxy shows the following kinematically decoupled components (KDCs): a disk and a NSC. Our orbit-based dynamical Schwarzschild model revealed that the NSC is a distinct kinematic feature and it constitutes the peak of metallicity and old ages in FCC 47. The main body consists of two counter-rotating populations and is dominated by a more metal-poor population. The GC system is bimodal with a dominant metal-poor population and the total GC system mass is \u30317% of the NSC mass (\u3037 7 10^8 M_sun). Conclusions: The rotation, high metallicity, and high mass of the NSC cannot be explained by GC-inspiral alone. It most likely requires additional, quickly quenched, in-situ formation. The presence of two KDCs likely are evidence of a major merger that has significantly altered the structure of FCC 47, indicating the important role of galaxy mergers in forming the complex kinematics in the galaxy-NSC system

    Continental Origin for Q Haplogroup Patrilineages in Argentina and Paraguay

    Get PDF
    Haplogroup Q originated in Eurasia around 30,000 years ago. It is present in Y-chromosomes from Asia and Europe at rather low frequencies. Since America is undoubtedly one of the continents where this haplogroup is highly represented, it has been defined as one of the founding haplogroups. Its M3 clade has been early described as the most frequent, with Pan-American representation. However, it was also possible to find several other haplogroup Q clades at low frequencies. Numerous mutations have been described for haplogroup Q, allowing the analysis of its variability and the assignment of its geographic origin. We have analyzed 442 samples belonging to haplogroup Q of unrelated men from Argentina and Paraguay, but this work is specifically referred to 27 Q (xM3) lineages. We tested 3 SNPs by APLP, 3 for RFLP, 15 SNPs by Sanger sequencing, and 17 STRs. Our approach allowed us to identify 5 sub-haplogroups. Q-M3 and Q-CTS2730/Z780 are undoubtedly autochthonous lineages and represent the most frequent sub-haplogroups. With significant representation in self-defined aboriginal populations, their autochthonous status has been previously described. The aim of present work is to identify the continental origin of the remaining Q lineages. Thus, we analyzed the STR haplotypes for the samples of our series and compared them with haplotypes described by other authors for the rest of the world. Even when haplogroup Qs have been extensively studied in America, some of them could have their origin in post Columbian human migration from Europe and Middle East

    oMEGACat I: MUSE spectroscopy of 300,000 stars within the half-light radius of ω\omega Centauri

    Full text link
    Omega Centauri (ω\omega Cen) is the most massive globular cluster of the Milky Way and has been the focus of many studies that reveal the complexity of its stellar populations and kinematics. However, most previous studies have used photometric and spectroscopic datasets with limited spatial or magnitude coverage, while we aim to investigate it having full spatial coverage out to its half-light radius and stars ranging from the main sequence to the tip of the red giant branch. This is the first paper in a new survey of ω\omega Cen that combines uniform imaging and spectroscopic data out to its half-light radius to study its stellar populations, kinematics, and formation history. In this paper, we present an unprecedented MUSE spectroscopic dataset combining 87 new MUSE pointings with previous observations collected from guaranteed time observations. We extract spectra of more than 300,000 stars reaching more than two magnitudes below the main sequence turn-off. We use these spectra to derive metallicity and line-of-sight velocity measurements and determine robust uncertainties on these quantities using repeat measurements. Applying quality cuts we achieve signal-to-noise ratios of 16.47/73.51 and mean metallicity errors of 0.174/0.031 dex for the main sequence stars (18 mag <magF625W<\rm < mag_{F625W}<22 mag) and red giant branch stars (16 mag <magF625W<<\rm mag_{F625W}<10 mag), respectively. We correct the metallicities for atomic diffusion and identify foreground stars. This massive spectroscopic dataset will enable future studies that will transform our understanding of ω\omega Cen, allowing us to investigate the stellar populations, ages, and kinematics in great detail.Comment: 27 pages, 18 figures, 3 tables, accepted for publication in ApJ, the catalog will be available in the online material of the published articl

    A Deep View into the Nucleus of the Sagittarius Dwarf Spheroidal Galaxy with MUSE. II. Kinematic Characterization of the Stellar Populations

    Get PDF
    The Sagittarius dwarf spheroidal galaxy is in an advanced stage of disruption but still hosts its nuclear star cluster (NSC), M54, at its center. In this paper, we present a detailed kinematic characterization of the three stellar populations present in M54: young metal-rich (YMR); intermediate-age metal-rich (IMR); and old metal-poor (OMP), based on the spectra of ~6500 individual M54 member stars extracted from a large Multi-Unit Spectroscopic Explorer (MUSE)/Very Large Telescope data set. We find that the OMP population is slightly flattened with a low amount of rotation (~0.8 km s−1) and with a velocity dispersion that follows a Plummer profile. The YMR population displays a high amount of rotation (~5 km s−1) and a high degree of flattening, with a lower and flat velocity dispersion profile. The IMR population shows a high but flat velocity dispersion profile, with some degree of rotation (~2 km s−1). We complement our MUSE data with information from Gaia DR2 and confirm that the stars from the OMP and YMR populations are comoving in 3D space, suggesting that they are dynamically bound. While dynamical evolutionary effects (e.g., energy equipartition) are able to explain the differences in velocity dispersion between the stellar populations, the strong differences in rotation indicate different formation paths for the populations, as supported by an N-body simulation tailored to emulate the YMR–OMP system. This study provides additional evidence for the M54 formation scenario proposed in our previous work, where this NSC formed via GC accretion (OMP) and in situ formation from gas accretion in a rotationally supported disk (YMR)

    oMEGACat I: MUSE spectroscopy of 300,000 stars within the half-light radius of ω Centauri

    Get PDF
    Omega Centauri (ω Cen) is the most massive globular cluster of the Milky Way and has been the focus of many studies that reveal the complexity of its stellar populations and kinematics. However, most previous studies have used photometric and spectroscopic datasets with limited spatial or magnitude coverage, while we aim to investigate it having full spatial coverage out to its half-light radius and stars ranging from the main sequence to the tip of the red giant branch. This is the first paper in a new survey of ω Cen that combines uniform imaging and spectroscopic data out to its half-light radius to study its stellar populations, kinematics, and formation history. In this paper, we present an unprecedented MUSE spectroscopic dataset combining 87 new MUSE pointings with previous observations collected from guaranteed time observations. We extract spectra of more than 300,000 stars reaching more than two magnitudes below the main sequence turn-off. We use these spectra to derive metallicity and line-of-sight velocity measurements and determine robust uncertainties on these quantities using repeat measurements. Applying quality cuts we achieve signal-to-noise ratios of 16.47/73.51 and mean metallicity errors of 0.174/0.031 dex for the main sequence stars (18 mag < magF625W < 22 mag) and red giant branch stars (16 mag < magF625W <10 mag), respectively. We correct the metallicities for atomic diffusion and identify foreground stars. This massive spectroscopic dataset will enable future studies that will transform our understanding of ω Cen, allowing us to investigate the stellar populations, ages, and kinematics in great detail

    A Deep View into the Nucleus of the Sagittarius Dwarf Spheroidal Galaxy with MUSE. I. Data and Stellar Population Characterization

    Get PDF
    The center of the Sagittarius dwarf spheroidal galaxy (Sgr dSph) hosts a nuclear star cluster (NSC), M54, which is the only galaxy nucleus that can be resolved into individual stars at optical wavelengths. It is thus a key target for understanding the formation of NSCs and their relation to globular clusters (GCs). We present a large Multi-Unit Spectroscopic Explorer data set that covers M54 out to ~2.5 half-light radius, from which we extracted the spectra of ~6600 cluster member stars. We use these data in combination with Hubble Space Telescope photometry to derive age and metallicity for each star. The stellar populations show a well-defined age–metallicity relation, implying an extended formation history for the central region of Sgr dSph. We classify these populations into three groups, all with the same systemic velocity: young metal-rich (YMR; 2.2 Gyr, [Fe/H] = −0.04); intermediate-age metal-rich (IMR; 4.3 Gyr, [Fe/H] = −0.29); and old metal-poor (OMP; 12.2 Gyr, [Fe/H] = −1.41). The YMR and OMP populations are more centrally concentrated than the IMR population, which are likely stars of the Sgr dSph. We suggest that the OMP population is the result of accretion and merging of two or more old and metal-poor GCs dragged to the center by dynamical friction. The YMR is consistent with being formed by in situ star formation in the nucleus. The ages of the YMR population suggest that it may have been triggered into forming when the Sgr dSph began losing its gas during the most recent interaction with the Milky Way, ~3 Gyr ago

    Light element variations within the different age-metallicity populations in the nucleus of the Sagittarius dwarf

    No full text
    The cluster M54 lies at the centre of the Sagittarius dwarf spheroidal galaxy, and therefore may be the closest example of a nuclear star cluster. Either in situ star formation, inspiralling globular clusters, or a combination have been invoked to explain the wide variety of stellar sub-populations in nuclear star clusters. Globular clusters are known to exhibit light element variations, which can be identified using the photometric construct called a chromosome map. In this letter, we create chromosome maps for three distinct age-metallicity sub-populations in the vicinity of M54. We find that the old, metal-poor population shows the signature of light element variations, while the young and intermediate-age metal rich populations do not. We conclude that the nucleus of Sagittarius formed through a combination of in situ star formation and globular cluster accretion. This letter demonstrates that properly constructed chromosome maps of iron-complex globular clusters can provide insight into the formation locations of the different stellar populations
    corecore