268 research outputs found

    Sobre la puesta, incubación de huevos, nacimiento y desarrollo de crías de <i>Philodryas viridissima</i> (Colubridae: Xenodontinae) en cautiverio

    Get PDF
    El género Philodryas (Wagler, 1830) incluye aproximadamente 21 especies distribuidas en casi toda Sudamérica. Existen reportes sobre la dieta, hábitat y tácticas defensivas de muchas especies del género (Bozinovic y Rosenman, 1988; Marques, 1999; Hartmann y Marques, 2005), pero los datos reproductivos se restringen a pocas especies. El día 10 de noviembre del 2005 se capturó una hembra de Philodryas viridissima oviponiendo en un hormiguero al lado de un sendero en la Reserva privada de Potrerillo del Guendá y Las Conchas, a 40 km al Oeste de Santa Cruz de la Sierra, Bolivia.Asociación Herpetológica Argentina (AHA

    Equilibria-based Probabilistic Model Checking for Concurrent Stochastic Games

    Get PDF
    Probabilistic model checking for stochastic games enables formal verification of systems that comprise competing or collaborating entities operating in a stochastic environment. Despite good progress in the area, existing approaches focus on zero-sum goals and cannot reason about scenarios where entities are endowed with different objectives. In this paper, we propose probabilistic model checking techniques for concurrent stochastic games based on Nash equilibria. We extend the temporal logic rPATL (probabilistic alternating-time temporal logic with rewards) to allow reasoning about players with distinct quantitative goals, which capture either the probability of an event occurring or a reward measure. We present algorithms to synthesise strategies that are subgame perfect social welfare optimal Nash equilibria, i.e., where there is no incentive for any players to unilaterally change their strategy in any state of the game, whilst the combined probabilities or rewards are maximised. We implement our techniques in the PRISM-games tool and apply them to several case studies, including network protocols and robot navigation, showing the benefits compared to existing approaches

    Climatic vulnerabilities and ecological preferences of soil invertebrates across biomes.

    Get PDF
    Unlike plants and vertebrates, the ecological preferences, and potential vulnerabilities of soil invertebrates to environmental change, remain poorly understood in terrestrial ecosystems globally. We conducted a cross-biome survey including 83 locations across six continents to advance our understanding of the ecological preferences and vulnerabilities of the diversity of dominant and functionally important soil invertebrate taxa, including nematodes, arachnids and rotifers. The diversity of invertebrates was analyzed through amplicon sequencing. Vegetation and climate drove the diversity and dominant taxa of soil invertebrates. Our results suggest that declines in forest cover and plant diversity, and reductions in plant production associated with increases in aridity, can result in reductions of the diversity of soil invertebrates in a drier and more managed world. We further developed global atlases of the diversity of these important soil invertebrates, which were cross-validated using an independent database. Our study advances the current knowledge of the ecological preferences and vulnerabilities of the diversity and presence of functionally important soil invertebrates in soils from across the globe. This information is fundamental for improving and prioritizing conservation efforts of soil genetic resources and management policies

    An Anisotropic Wormhole:TUNNELLING in Time and Space

    Full text link
    We discuss the structure of a gravitational euclidean instanton obtained through coupling of gravity to electromagnetism. Its topology at fixed tt is S1×S2S^1\times S^2. This euclidean solution can be interpreted as a tunnelling to a hyperbolic space (baby universe) at t=0t=0 or alternatively as a static wormhole that joins the two asymptotically flat spaces of a Reissner--Nordstr\"om type solution with M=0M=0.Comment: PLAIN-TEX, 16 pages (4 figures not included), Report DFTT 2/9

    Quantum Theory of Noncommutative Fields

    Full text link
    Generalizing the noncommutative harmonic oscillator construction, we propose a new extension of quantum field theory based on the concept of "noncommutative fields". Our description permits to break the usual particle-antiparticle degeneracy at the dispersion relation level and introduces naturally an ultraviolet and an infrared cutoff. Phenomenological bounds for these new energy scales are given.Comment: LaTeX file, JHEP3.cls, subequations.sty; 12 pages, no figures. Final version published in JHEP with some references adde

    A Target Enrichment Bait Set for Studying Relationships among Ostariophysan Fishes

    Get PDF
    © 2020 by the American Society of Ichthyologists and Herpetologists. Target enrichment of conserved nuclear loci has helped reconstruct evolutionary relationships among a wide variety of species. While there are preexisting bait sets to enrich a few hundred loci across all fishes or a thousand loci from acanthomorph fishes, no bait set exists to enrich large numbers (\u3e1,000 loci) of ultraconserved nuclear loci from ostariophysans, the second largest actinopterygian superorder. In this study, we describe how we designed a bait set to enrich 2,708 ultraconserved nuclear loci from ostariophysan fishes by combining an existing genome assembly with low coverage sequence data collected from two ostariophysan lineages. We perform a series of enrichment experiments using this bait set across the ostariophysan tree of life, from the deepest splits among the major groups (\u3e150 Ma) to more recent divergence events that have occurred during the last 50 million years. Our results demonstrate that the bait set we designed is useful for addressing phylogenetic questions from the origin of crown ostariophysans to more recent divergence events, and our in silico results suggest that this bait set may be useful for addressing evolutionary questions in closely related groups of fishes, like Clupeiformes

    Equilibria-based probabilistic model checking for concurrent stochastic games

    Get PDF
    Probabilistic model checking for stochastic games enables formal verification of systems that comprise competing or collaborating entities operating in a stochastic environment. Despite good progress in the area, existing approaches focus on zero-sum goals and cannot reason about scenarios where entities are endowed with different objectives. In this paper, we propose probabilistic model checking techniques for concurrent stochastic games based on Nash equilibria. We extend the temporal logic rPATL (probabilistic alternating-time temporal logic with rewards) to allow reasoning about players with distinct quantitative goals, which capture either the probability of an event occurring or a reward measure. We present algorithms to synthesise strategies that are subgame perfect social welfare optimal Nash equilibria, i.e., where there is no incentive for any players to unilaterally change their strategy in any state of the game, whilst the combined probabilities or rewards are maximised. We implement our techniques in the PRISM-games tool and apply them to several case studies, including network protocols and robot navigation, showing the benefits compared to existing approaches

    Reliability of multi-site UK Biobank MRI brain phenotypes for the assessment of neuropsychiatric complications of SARS-CoV-2 infection: The COVID-CNS travelling heads study.

    Get PDF
    Funder: National Institute for Health Research (NIHR)INTRODUCTION: Magnetic resonance imaging (MRI) of the brain could be a key diagnostic and research tool for understanding the neuropsychiatric complications of COVID-19. For maximum impact, multi-modal MRI protocols will be needed to measure the effects of SARS-CoV-2 infection on the brain by diverse potentially pathogenic mechanisms, and with high reliability across multiple sites and scanner manufacturers. Here we describe the development of such a protocol, based upon the UK Biobank, and its validation with a travelling heads study. A multi-modal brain MRI protocol comprising sequences for T1-weighted MRI, T2-FLAIR, diffusion MRI (dMRI), resting-state functional MRI (fMRI), susceptibility-weighted imaging (swMRI), and arterial spin labelling (ASL), was defined in close approximation to prior UK Biobank (UKB) and C-MORE protocols for Siemens 3T systems. We iteratively defined a comparable set of sequences for General Electric (GE) 3T systems. To assess multi-site feasibility and between-site variability of this protocol, N = 8 healthy participants were each scanned at 4 UK sites: 3 using Siemens PRISMA scanners (Cambridge, Liverpool, Oxford) and 1 using a GE scanner (King's College London). Over 2,000 Imaging Derived Phenotypes (IDPs), measuring both data quality and regional image properties of interest, were automatically estimated by customised UKB image processing pipelines (S2 File). Components of variance and intra-class correlations (ICCs) were estimated for each IDP by linear mixed effects models and benchmarked by comparison to repeated measurements of the same IDPs from UKB participants. Intra-class correlations for many IDPs indicated good-to-excellent between-site reliability. Considering only data from the Siemens sites, between-site reliability generally matched the high levels of test-retest reliability of the same IDPs estimated in repeated, within-site, within-subject scans from UK Biobank. Inclusion of the GE site resulted in good-to-excellent reliability for many IDPs, although there were significant between-site differences in mean and scaling, and reduced ICCs, for some classes of IDP, especially T1 contrast and some dMRI-derived measures. We also identified high reliability of quantitative susceptibility mapping (QSM) IDPs derived from swMRI images, multi-network ICA-based IDPs from resting-state fMRI, and olfactory bulb structure IDPs from T1, T2-FLAIR and dMRI data. CONCLUSION: These results give confidence that large, multi-site MRI datasets can be collected reliably at different sites across the diverse range of MRI modalities and IDPs that could be mechanistically informative in COVID brain research. We discuss limitations of the study and strategies for further harmonisation of data collected from sites using scanners supplied by different manufacturers. These acquisition and analysis protocols are now in use for MRI assessments of post-COVID patients (N = 700) as part of the ongoing COVID-CNS study
    corecore