1,891 research outputs found

    Distributed energy-aware resource allocation in multi-antenna multi-carrier interference networks with statistical CSI

    Get PDF
    Resource allocation for energy efficiency optimization in multi-carrier interference networks with multiple receive antennas is tackled. First, a one-hop network is considered, and then, the results are extended to the case of a two-hop network in which amplify-and-forward relaying is employed to enable communication. A distributed algorithm which optimizes a system-wide energy-efficient performance function, and which is guaranteed to converge to a stable equilibrium point, is provided. Unlike most previous works, in the definition of the energy efficiency, not only the users' transmit power but also the circuit power that is required to operate the devices is taken into account. All of the proposed procedures are guaranteed to converge and only require statistical channel state information, thus lending themselves to a distributed implementation. The asymptotic regime of a saturated network in which both the active users and the number of receive antennas deployed in each receiver grow large is also analyzed. Numerical results are provided to confirm the merits of the proposed algorithms

    Hot Carrier Dynamics in the X Valley in Si and Ge Measured by Pump-IR-Probe Absorption Spectroscopy

    Get PDF
    Si is the semiconductor of choice for nanoelectronic roadmap into the next century for computer and other nanodevices. With growing interest in Si, Ge, and Si(sub m)Ge(sub n) strained superlattices, knowledge of the carrier relaxation processes in these materials and structures has become increasingly important. The limited time resolution for earlier studies of carrier dynamics in Ge and Si, performed using Nd:glass lasers, was not sufficient to observe the fast cooling processes. In this paper, we present a direct measurement of hot carrier dynamics in the satellite X valley in Si and Ge by time-resolved infrared(IR) absorption spectroscopy, and show the potential of our technique to identify whether the X valley is the lowest conduction valley in semiconductor materials and structures

    Experimental and numerical assessment of fibre bridging toughening effects on the compressive behaviour of delaminated composite plates

    Get PDF
    Increasing the Mode I inter-laminar fracture toughness of composite laminates can contribute to slowing down delamination growth phenomena, which can be considered one of the most critical damage mechanisms in composite structures. Actually, the Mode I interlaminar fracture toughness (GIc) in fibre-reinforced composite materials has been found to considerably increase with the crack length when the fibre bridging phenomenon takes place. Hence, in this paper, the fibre bridging phenomenon has been considered as a natural toughening mechanism able to replace embedded metallic or composite reinforcements, currently used to increase tolerance to inter-laminar damage. An experimental/numerical study on the influence of delamination growth on the compressive behaviour of fibre-reinforced composites characterised by high sensitivity to the fibre bridging phenomenon has been performed. Coupons, made of material systems characterised by a variable toughness related to a high sensitivity to the fibre bridging phenomenon and containing artificial through-the-width delaminations, were subjected to a compressive mechanical test and compared to coupons made of standard material system with constant toughness. Out-of-plane displacements and strains were monitored during the compression test by means of strain gauges and digital image correlation to assess the influence of fibre bridging on delamination buckling, delamination growth and on the global buckling of the specimens, including buckling shape changes. Experimental data were combined with a numerical study, performed by means of a virtual crack closure technique based procedure, named SMart Time XB-Fibre Bridging (SMXB-FB), able to mimic the crack bridging effect on the toughness properties of the material system. The combination of numerical results and experimental data has allowed the deformations and the buckling shape changes to be correlated to the onset and evolution of damage and, hence, contributes to improving the knowledge on the interaction of the failure mechanisms in the investigated composite specimens

    Microbioreactor (micro-Matrix) potential in aerobic and anaerobic conditions with different industrially relevant microbial strains

    Get PDF
    Microscale fermentation systems are important high throughput tools in clone selection, and bioprocess set up and optimization, since they provide several parallel experiments in controlled conditions of pH, temperature, agitation, and gas flow rate. In this work we evaluated the performance of biotechnologically relevant strains with different respiratory requirements in the micro-Matrix microbioreactor. In particular Escherichia coli K4 requires well aerated fermentation conditions to improve its native production of chondroitin-like capsular polysaccharide, a biomedically attractive polymer. Results from batch and fed-batch experiments demonstrated high reproducibility with those obtained on 2 L reactors, although highlighting a pronounced volume loss for longer-term experiments. Basfia succiniciproducens and Actinobacillus succinogenes need CO2 addition for the production of succinic acid, a building block with several industrial applications. Different CO2 supply modes were tested for the two strains in 24 h batch experiments and results well compared with those obtained on lab-scale bioreactors. Overall, it was demonstrated that the micro-Matrix is a useful scale-down tool that is suitable for growing metabolically different strains in simple batch process, however, a series of issues should still be addressed in order to fully exploit its potential

    The Static Failure of Adhesively Bonded Metal Laminate Structures: A Cohesive Zone Approach

    Get PDF
    Data on distribution, ecology, biomass, recruitment, growth, mortality and productivity of the West African bloody cockle Anadara senilis were collected at the Banc d'Aguuin, Mauritania, in early 1985 and 1986. Ash-free dry weight appeared to be correlated best with shell height. A. senilis was abundant on the tidal flats of landlocked coastal bays, but nearly absent on the tidal flats bordering the open sea. The average biomass for the entire area of tidal flats was estimated at 5.5 g·m−2 ash-free dry weight. The A. senilis population appeared to consist mainly of 10 to 20-year-old individuals, showing a very slow growth and a production: biomass ratio of about 0.02 y−1. Recruitment appeared negligible and mortality was estimated to be about 10% per year. Oystercatchers (Haematopus ostralegus), the gastropod Cymbium cymbium and unknown fish species were responsible for a large share of this. The distinction of annual growth marks permitted the assessment of year-class strength, which appeared to be correlated with the average discharge of the river Senegal. This may be explained by assuming that year-class strength and river discharge both are correlated with rainfall at the Banc d'Arguin.

    the use of poly lactic acid to improve projection of reconstructed nipple

    Get PDF
    Abstract Purpose Nipple-areola reconstruction represents an important step for final mammary reconstruction. Many techniques have been described. The drawback is the progressive nipple projection loss with time from 50% to over 70% of the initial projection. In this report, we evaluated the effect of injectable poly-lactic acid (PLLA) to improve projection of reconstructed nipples. Results We selected 12 patients with a residual nipple projection between 0.1 and 2 mm. The patients were injected locally inside the nipple with 0.5 ml of PLLA (dilution 1:4) every 4 weeks for 4 times. At the study end, patients were satisfied with results. No adverse effects were observed. After one year, an increase of nipple projection ranging from 0.5 to 3.5 mm was obtained with an average increase of 2.3 mm (282%) and this variation was statistically significant ( p Conclusion The use of injectable PLLA is a simple and effective procedure to improve projection of reconstructed nipple

    Ethylic esters as green solvents for the extraction of intracellular polyhydroxyalkanoates produced by mixed microbial culture

    Get PDF
    Volatile fatty acids obtained from the fermentation of the organic fraction of municipal solid waste can be used as raw materials for non-toxic ethyl ester (EE) synthesis as well as feedstock for the production of polyhydroxyalkanoates (PHAs). Taking advantage of the concept of an integrated process of a bio-refinery, in the present paper, a systematic investigation on the extraction of intracellular poly(3-hydroxybutyrate-co-3-hydroxyvalerate), produced by mixed microbial culture by using EEs was reported. Among the tested EEs, ethyl acetate (EA) was the best solvent, dissolving the copolymer at the lowest temperature. Then, extraction experiments were carried out by EA at different temperatures on two biomass samples containing PHAs with different average molecular weights. The parallel characterization of the extracted and non-extracted PHAs evidenced that at the lower temperature (100◦C) EA solubilizes preferentially the polymer fractions richer in 3HV comonomers and with the lower molecular weight. By increasing the extraction temperature from 100◦C to 125◦C, an increase of recovery from about 50 to 80 wt% and a molecular weight reduction from 48% to 65% was observed. The results highlighted that the extracted polymer purity is always above 90 wt% and that it is possible to choose the proper extraction condition to maximize the recovery yield at the expense of polymer fractionation and degradation at high temperatures or use milder conditions to maintain the original properties of a polymer

    \u3ci\u3ePseudomonas syringae\u3c/i\u3e Type III Secretion System Targeting Signals and Novel Effectors Studied with a Cya Translocation Reporter

    Get PDF
    Pseudomonas syringae pv. tomato strain DC3000 is a pathogen of tomato and Arabidopsis. The hrp-hrcencoded type III secretion system (TTSS), which injects bacterial effector proteins (primarily called Hop or Avr proteins) into plant cells, is required for pathogenicity. In addition to being regulated by the HrpL alternative sigma factor, most avr or hop genes encode proteins with N termini that have several characteristic features, including (i) a high percentage of Ser residues, (ii) an aliphatic amino acid (Ile, Leu, or Val) or Pro at the third or fourth position, and (iii) a lack of negatively charged amino acids within the first 12 residues. Here, the well-studied effector AvrPto was used to optimize a calmodulin-dependent adenylate cyclase (Cya) reporter system for Hrp-mediated translocation of P. syringae TTSS effectors into plant cells. This system includes a cloned P. syringae hrp gene cluster and the model plant Nicotiana benthamiana. Analyses of truncated AvrPto proteins fused to Cya revealed that the N-terminal 16 amino acids and/or codons of AvrPto are sufficient to direct weak translocation into plant cells and that longer N-terminal fragments direct progressively stronger translocation. AvrB, tested because it is poorly secreted in cultures by the P. syringae Hrp system, was translocated into plant cells as effectively as AvrPto. The translocation of several DC3000 candidate Hop proteins was also examined by using Cya as a reporter, which led to identification of three new intact Hop proteins, designated HopPtoQ, HopPtoT1, and HopPtoV, as well as two truncated Hop proteins encoded by the naturally disrupted genes hopPtoS4::tnpA and hopPtoAG::tnpA. We also confirmed that HopPtoK, HopPtoC, and AvrPphEPto are translocated into plant cells. These results increased the number of Hrp system-secreted proteins in DC3000 to 40. Although most of the newly identified Hop proteins possess N termini that have the same features as the N termini of previously described Hop proteins, HopPtoV has none of these characteristics. Our results indicate that Cya should be a useful reporter for exploring multiple aspects of the Hrp system in P. syringae

    Influence of the state of light on the optically induced interparticle interaction

    Get PDF
    A general expression for the energy of interparticle interaction induced by an arbitrary mode of light is determined using quantum electrodynamics, and it is shown that the Casimir-Polder potential is included within this quantum result. Equations are also derived for the corresponding coupling induced by multimode number states of light, and the dependence of the pair energy on the Poynting vector and polarization state is determined. Attention is then focused on the interactions between particles trapped in counterpropagating coherent beams, both with and without interference, and it is shown that the results afford insights into the multiparticle structures that can be optically fabricated with counterpropagating input. Brief consideration is also given to the effect of squeezing the optical coherent state. Extending previous studies of optical binding in Laguerre-Gaussian beams, results are given for the case of particles trapped at radially different locations within the beam structure. Finally, consideration is given to interparticle interactions induced by broadband light, and it is shown how the length of optically fabricated particle chains can be controlled by the use of wavelength filters
    corecore