54 research outputs found

    Novel Variant in Exon 3 of the BMP4 Gene Resulted in Ectopic Posterior Pituitary, Craniocervical Junction Dysmorphism and Limb Anomaly

    Get PDF
    Introduction. Pituitary differentiation involves a large number of transcription factors. In particular, BMP4 expression is fundamental for pituitary gland commitment from the ventral diencephalon, suppressing Shh expression in Rathke's pouch. Pathogenic variants in BMP4 are reported in the literature with a broad phenotypic spectrum, including pituitary and brain malformations. Case Presentation. A five-year-old girl came to medical attention following a mild cervical trauma with onset of cervical pain. On clinical examination at birth, postaxial polydactyly type B of the left hand was observed and removed at 10 months of age. A cervical radiography was performed, and a suspicion of craniocervical junction malformation was made. A magnetic resonance imaging of the cervical spine was made, showing an ectopic posterior pituitary, associated with dysmorphism of the craniocervical junction. The anthropometric parameters were pubertal Tanner stage 1, weight 16 kg (z-score: -1.09), height 107 cm (z-score: -0.76), and BMI 14 kg/m(2) (z-score: -0.92). Normal hormonal assessment was detected. Genetic analysis via next generation sequencing showed a novel de novo heterozygous variant (c.277 G > T, p.Glu93*) in exon 3 of BMP4. Discussion. We described a novel mutation in BMP4, resulting in ectopic posterior pituitary with normal hormonal assessment, associated to craniocervical junction dysmorphism and limb anomaly. It is important to monitor patient's growth and puberty and to screen the onset of symptoms related to the deficiency of one or more anterior as well as posterior pituitary hormones

    Resolvin D1 Modulates the Intracellular VEGF-Related miRNAs of Retinal Photoreceptors Challenged With High Glucose

    Get PDF
    Stimulation of retinal photoreceptors with elevated glucose concentration (30 mM) for 96 h, served as diabetic retinopathy in vitro model to study Resolvin D1 (50 nM) effects on neovascularization. VEGF and anti-angiogenic miR-20a-3p, miR-20a-5p, miR-106a- 5p, and miR-20b expression was assessed either in photoreceptors exposed to HG or in exosomes released by those cells. High glucose increased VEGF levels and concurrently decreased anti-angiogenic miRNAs content in photoreceptors and exosomes. RvD1 reverted the effects of glucose damage in photoreceptors and exosomal pro-angiogenic potential, tested with the HUVEC angiogenesis assay. By activating FPR2 receptor, RvD1 modulated both the expression of anti-angiogenic miRNA, which decrease VEGF, and the pro-angiogenic potential of exosomes released by primary retinal cells. HUVEC transfection with miR-20a-3p, miR-20a-5p, miR-106a-5p, and miR-20b antagomirs, followed by exposure to exosomes from photoreceptors, confirmed the VEGF-related miRNAs mechanism and the anti-angiogenic effects of RvD1

    Structure-based design of an urokinase-type plasminogen activator receptor–derived peptide inhibiting cell migration and lung metastasis

    Full text link
    The urokinase-type plasminogen activator receptor (uPAR) plays a central role in sustaining the malignant phenotype and promoting tumor metastasis. The Ser88-Arg-Ser-Arg-Tyr92 is the minimum chemotactic sequence of uPAR required to induce the same intracellular signaling as its ligand uPA. Here, we describe the generation of new peptide inhibitors of cell migration and invasion derived from SRSRY by a drug design approach. Ac-Arg-Glu-Arg-Phe-NH2 (i.e., RERF), which adopts a turned structure in solution, was selected for its ability to potently prevent SRSRY-directed cell migration. Fluorescein-RERF associates with very high affinity to RBL-2H3 rat basophilic leukemia cells expressing the human formyl peptide receptor (FPR). Accordingly, femtomolar concentrations of RERF prevent agonist-dependent internalization of FPR and inhibit N-formyl-Met-Leu-Phe–dependent migration in a dose-dependent manner. In the absence of FPR, fluorescein-RERF binds to cell surface at picomolar concentrations in an αv integrin–dependent manner. The involvement of vitronectin receptor is further supported by the findings that 100 pmol/L RERF selectively inhibits vitronectin-dependent RBL-2H3 cell migration and prevents SRSRY-triggered uPAR/αv association. Furthermore, RERF reduces the speed of wound closure and the extent of Matrigel invasion by human fibrosarcoma HT1080 cells without affecting cell proliferation. Finally, a 3- to 5-fold reduction of lung metastasis number and size in nude mice following i.v. injection of green fluorescent protein–expressing HT1080 cells in the presence of 3.32 mg/kg RERF is observed. Our findings indicate that RERF effectively prevents malignant cell invasion in vivo with no signs of toxicity and may represent a promising prototype drug for anticancer therapy

    Addressing climate change with behavioral science: a global intervention tournament in 63 countries

    Get PDF
    Effectively reducing climate change requires marked, global behavior change. However, it is unclear which strategies are most likely to motivate people to change their climate beliefs and behaviors. Here, we tested 11 expert-crowdsourced interventions on four climate mitigation outcomes: beliefs, policy support, information sharing intention, and an effortful tree-planting behavioral task. Across 59,440 participants from 63 countries, the interventions’ effectiveness was small, largely limited to nonclimate skeptics, and differed across outcomes: Beliefs were strengthened mostly by decreasing psychological distance (by 2.3%), policy support by writing a letter to a future-generation member (2.6%), information sharing by negative emotion induction (12.1%), and no intervention increased the more effortful behavior—several interventions even reduced tree planting. Last, the effects of each intervention differed depending on people’s initial climate beliefs. These findings suggest that the impact of behavioral climate interventions varies across audiences and target behaviors

    Addressing climate change with behavioral science:A global intervention tournament in 63 countries

    Get PDF

    Apolipoprotein E polymorphism in Italy investigated in native plasma by a simple polyacrylamide gel isoelectric focusing tecnique. Comparison with frequency data of other European populations.

    No full text
    A new polyacrylamide gel isoelectric focusing (PAGIEF) technique has been developed that allows rapid and reliable identification of apolipoprotein E (APOE) phenotypes directly from plasma or serum without any prior treatment. This method was used to determine the APOE phenotypes in samples from Central and Southern Italy, Sicily, and Sardinia. The frequencies observed for the APOE*2, APOE*3, and APOE*4 alleles in Central and Southern Italy (Sicily included) were similar (0.066, 0.851, 0.083 and 0.056, 0.858, 0.085 respectively) though lower APOE*4 frequencies were found in the more southern regions. The Sardinian population showed APOE gene frequencies (APOE*2 = 0.050, APOE*3 = 0.898, APOE*4 = 0.052) to be significantly different from those of the rest of Italy owing to the low APOE*4 frequency, the lowest among Caucasian populations. The frequencies were compared with those found in other European populations. A clear cut North-South decreasing dine was found for APOE*4 allele frequencies and an opposite trend was found for APOE*3 frequencies. The overall dispersion of European populations as determined by the three APOE allele frequencies was graphically represented using coordinate analysis. The tendency of the APOE*4 frequency to decline with latitude both at the Italian and at the European level was discussed with reference to similar trends observed for dietary habits (saturated fat intake)

    Il VoLIP: una risorsa per lo studio della variazione nel parlato della lingua italiana

    No full text
    Nel presente contributo si descrive una nuova risorsa linguistica, il corpus VoLIP (Voce del LIP), e se ne esaminano le principali ipotesi applicative. Il VoLIP, finanziato dal Ministero dell’Istruzione, dell’Università e della Ricerca, permette l’ascolto e l’interrogazione dei file audio del corpus LIP (De Mauro et al. 1993), secondo criteri sociolinguistici, lessicali e morfosintattici. Tale risorsa consente quindi di interrogare il corpus LIP e di ottenere come risultato la porzione di audio desiderata associata alla sua trascrizione ortografica. Il VoLIP fornisce tutti i campioni del corpus LIP in files wav (Windows PCM, 22050Hz. 16 bit) correlati con: a) i metadati in formato IMDI, b) la trascrizione ortografica originale e la sua revisione

    Isolation and Growth of Smooth Muscle-Like Cells Derived from Tuberous Sclerosis Complex-2 Human Renal Angiomyolipoma : Epidermal Growth Factor Is the Required Growth Factor

    Get PDF
    Tuberous sclerosis complex (TSC) is a tumor suppressor gene disorder characterized by mutations in the TSC1 or TSC2 genes. These mutations lead to the development of benign tumors involving smooth muscle cells, causing life-threatening lymphangioleiomyomatosis. We isolated and characterized two types of cells bearing a mutation in TSC2 exon 18 from a renal angiomyolipoma of a TSC patient: one population of α-actin-positive smooth muscle-like cells with loss of heterozygosity for the TSC2 gene (A(+) cells) and another of nonloss of heterozygosity keratin 8/18-positive epithelial-like cells (R(+) cells). Unlike control aortic vascular smooth muscle cells, A(+) cells required epidermal growth factor (EGF) to grow and substituting EGF with insulin-like growth factor (IGF)-1 failed to increase the cell number; however, omission of EGF did not cause cell loss. The A(+) cells constantly released IGF-1 into the culture medium and constitutively showed a high degree of S6K phosphorylation even when grown in serum-free medium. Exposure to antibodies against EGF and IGF-1 receptors caused a rapid loss of A(+) cells: 50% by 5 days and 100% by 12 days. Signal transduction mediated by EGF and IGF-I receptors is therefore involved in A(+) cell survival. These results may offer a novel therapeutic perspective for the treatment of TSC complications and lymphangioleiomyomatosis

    Investigation on a MMACHC mutant from cblC disease: The c.394C>T variant

    No full text
    The cblC disease is an inborn disorder of the vitamin B12 (cobalamin, Cbl) metabolism characterized by methylmalonic aciduria and homocystinuria. The clinical consequences of this disease are devastating and, even when early treated with current therapies, the affected children manifest symptoms involving vision, growth, and learning. The illness is caused by mutations in the gene codifying for MMACHC, a 282aa protein that transports and transforms the different Cbl forms. Here we present data on the structural properties of the truncated protein p.R132X resulting from the c.394C > T mutation that, along with c.271dupA and c.331C > T, is among the most common mutations in cblC. Although missing part of the Cbl binding domain, p.R132X is associated to late-onset symptoms and, therefore, it is supposed to retain residual function. However, to our knowledge structuralfunctional studies on c.394C > T mutant aimed at verifying this hypothesis are still lacking. By using a biophysical approach including Circular Dichroism, fluorescence, Small Angle X-ray Scattering, and Molecular Dynamics, we show that the mutant protein MMACHC-R132X retains secondary structure elements and remains compact in solution, partly preserving its binding affinity for Cbl. Insights on the fragile stability of MMACHCR132X-Cbl are provided

    Proteomics analysis of FUS mutant human motoneurons reveals altered regulation of cytoskeleton and other ALS-linked proteins via 3â€ČUTR binding

    No full text
    International audienceIncreasing evidence suggests that in Amyotrophic Lateral Sclerosis (ALS) mutated RNA binding proteins acquire aberrant functions, leading to altered RNA metabolism with significant impact on encoded protein levels. Here, by taking advantage of a human induced pluripotent stem cell-based model, we aimed to gain insights on the impact of ALS mutant FUS on the motoneuron proteome. Label-free proteomics analysis by mass-spectrometry revealed upregulation of proteins involved in catabolic processes and oxidation-reduction, and downregulation of cytoskeletal proteins and factors directing neuron projection. Mechanistically, proteome alteration does not correlate with transcriptome changes. Rather, we observed a strong correlation with selective binding of mutant FUS to target mRNAs in their 3'UTR. Novel validated targets, selectively bound by mutant FUS, include genes previously involved in familial or sporadic ALS, such as VCP, and regulators of membrane trafficking and cytoskeleton remodeling, such as ASAP1. These findings unveil a novel mechanism by which mutant FUS might intersect other pathogenic pathways in ALS patients' motoneurons
    • 

    corecore