43 research outputs found

    Diabetogenic milieus induce specific changes in mitochondrial transcriptome and differentiation of human pancreatic islets

    Get PDF
    In pancreatic β-cells, mitochondria play a central role in coupling glucose metabolism to insulin secretion. Chronic exposure of β-cells to metabolic stresses impairs their function and potentially induces apoptosis. Little is known on mitochondrial adaptation to metabolic stresses, i.e. high glucose, fatty acids or oxidative stress; being all highlighted in the pathogenesis of type 2 diabetes. Here, human islets were exposed for 3 days to 25 mm glucose, 0.4 mm palmitate, 0.4 mm oleate and transiently to H2O2. Culture at physiological 5.6 mm glucose served as no-stress control. Expression of mitochondrion-associated genes was quantified, including the transcriptome of mitochondrial inner membrane carriers. Targets of interest were further evaluated at the protein level. Three days after acute oxidative stress, no significant alteration in β-cell function or apoptosis was detected in human islets. Palmitate specifically increased expression of the pyruvate carriers MPC1 and MPC2, whereas the glutamate carrier GC1 and the aspartate/glutamate carrier AGC1 were down-regulated by palmitate and oleate, respectively. High glucose decreased mRNA levels of key transcription factors (HNF4A, IPF1, PPARA and TFAM) and energy-sensor SIRT1. High glucose also reduced expression of 11 mtDNA-encoded respiratory chain subunits. Interestingly, transcript levels of the carriers for aspartate/glutamate AGC2, malate DIC and malate/oxaloacetate/aspartate UCP2 were increased by high glucose, a profile suggesting important mitochondrial anaplerotic/cataplerotic activities and NADPH-generating shuttles. Chronic exposure to high glucose impaired glucose-stimulated insulin secretion, decreased insulin content, promoted caspase-3 cleavage and cell death, revealing glucotoxicity. Overall, expression profile of mitochondrion-associated genes was selectively modified by glucose, delineating a glucotoxic-specific signatur

    The FASTK family of proteins: emerging regulators of mitochondrial RNA biology

    Get PDF
    Abstract The FASTK family proteins have recently emerged as key post-transcriptional regulators of mitochondrial gene expression. FASTK, the founding member and its homologs FASTKD1–5 are architecturally related RNA-binding proteins, each having a different function in the regulation of mitochondrial RNA biology, from mRNA processing and maturation to ribosome assembly and translation. In this review, we outline the structure, evolution and function of these FASTK proteins and discuss the individual role that each has in mitochondrial RNA biology. In addition, we highlight the aspects of FASTK research that still require more attention

    Mitochondrial dynamics: quantifying mitochondrial fusion in vitro

    Get PDF
    Mitochondrial fusion is an essential process for preserving the integrity and stability of mitochondrial DNA; however, regulation of this process remains largely mysterious. In this issue of BMC Biology, Schauss and colleagues describe a simple, reliable, and robust novel assay that allows fusion of mammalian mitochondria to be quantified in vitro

    A human mitochondrial poly(A) polymerase mutation reveals the complexities of post-transcriptional mitochondrial gene expression

    Get PDF
    The p.N478D missense mutation in human mitochondrial poly(A) polymerase (mtPAP) has previously been implicated in a form of spastic ataxia with optic atrophy. In this study, we have investigated fibroblast cell lines established from family members. The homozygous mutation resulted in the loss of polyadenylation of all mitochondrial transcripts assessed; however, oligoadenylation was retained. Interestingly, this had differential effects on transcript stability that were dependent on the particular species of transcript. These changes were accompanied by a severe loss of oxidative phosphorylation complexes I and IV, and perturbation of de novo mitochondrial protein synthesis. Decreases in transcript polyadenylation and in respiratory chain complexes were effectively rescued by overexpression of wild-type mtPAP. Both mutated and wild-type mtPAP localized to the mitochondrial RNA-processing granules thereby eliminating mislocalization as a cause of defective polyadenylation. In vitro polyadenylation assays revealed severely compromised activity by the mutated protein, which generated only short oligo(A) extensions on RNA substrates, irrespective of RNA secondary structure. The addition of LRPPRC/SLIRP, a mitochondrial RNA-binding complex, enhanced activity of the wild-type mtPAP resulting in increased overall tail length. The LRPPRC/SLIRP effect although present was less marked with mutated mtPAP, independent of RNA secondary structure. We conclude that (i) the polymerase activity of mtPAP can be modulated by the presence of LRPPRC/SLIRP, (ii) N478D mtPAP mutation decreases polymerase activity and (iii) the alteration in poly(A) length is sufficient to cause dysregulation of post-transcriptional expression and the pathogenic lack of respiratory chain complexe

    EXD2 governs germ stem cell homeostasis and lifespan by promoting mitoribosome integrity and translation

    Get PDF
    Mitochondria are subcellular organelles critical for meeting the bioenergetic and biosynthetic needs of the cell. Mitochondrial function relies on genes and RNA species encoded both in the nucleus and mitochondria, as well as their coordinated translation, import and respiratory complex assembly. Here we describe the characterization of exonuclease domain like 2 (EXD2), a nuclear encoded gene that we show is targeted to the mitochondria and prevents the aberrant association of mRNAs with the mitochondrial ribosome. The loss of EXD2 resulted in defective mitochondrial translation, impaired respiration, reduced ATP production, increased reactive oxygen species and widespread metabolic abnormalities. Depletion of EXD2/CG6744 in D.melanogaster caused developmental delays and premature female germline stem cell attrition, reduced fecundity and a dramatic extension of lifespan that could be reversed with an anti-oxidant diet. Our results define a conserved role for EXD2 in mitochondrial translation that influences development and aging

    DMTs and Covid-19 severity in MS: a pooled analysis from Italy and France

    Get PDF
    We evaluated the effect of DMTs on Covid-19 severity in patients with MS, with a pooled-analysis of two large cohorts from Italy and France. The association of baseline characteristics and DMTs with Covid-19 severity was assessed by multivariate ordinal-logistic models and pooled by a fixed-effect meta-analysis. 1066 patients with MS from Italy and 721 from France were included. In the multivariate model, anti-CD20 therapies were significantly associated (OR = 2.05, 95%CI = 1.39–3.02, p < 0.001) with Covid-19 severity, whereas interferon indicated a decreased risk (OR = 0.42, 95%CI = 0.18–0.99, p = 0.047). This pooled-analysis confirms an increased risk of severe Covid-19 in patients on anti-CD20 therapies and supports the protective role of interferon

    A mitochondria-specific isoform of FASTK is present in mitochondrial RNA granules and regulates gene expression and function

    Get PDF
    Under a Creative Commons license.-- et al.The mitochondrial genome relies heavily on post-transcriptional events for its proper expression, and misregulation of this process can cause mitochondrial genetic diseases in humans. Here, we report that a novel translational variant of Fas-activated serine/threonine kinase (FASTK) co-localizes with mitochondrial RNA granules and is required for the biogenesis of ND6 mRNA, a mitochondrial-encoded subunit of the NADH dehydrogenase complex (complex I). We show that ablating FASTK expression in cultured cells and mice results specifically in loss of ND6 mRNA and reduced complex I activity in vivo. FASTK binds at multiple sites along the ND6 mRNA and its precursors and cooperates with the mitochondrial degradosome to ensure regulated ND6 mRNA biogenesis. These data provide insights into the mechanism and control of mitochondrial RNA processing within mitochondrial RNA granules.This work was supported by the Swiss National Science Foundation (31993A-141068/1), IGE3, and the State of Geneva. MS work was supported by the Gerencia Regional de Salud de la JCyL (GRS 642/A/11) and Roche Diagnostics.Peer Reviewe

    Role of FAST kinase domains 3 (FASTKD3) in post-transcriptional regulation of mitochondrial gene expression

    Get PDF
    The FASTK family of proteins has recently emerged as a central regulator of mitochondrial gene expression through the function of an unusual RNA-binding domains named RAP, shared by all six members of the family. Here we describe the role of one of the less characterized members, FASTKD3, in mitochondrial RNA metabolism. First, we show that, in contrast to FASTK, FASTKD2 and FASTKD5, FASTKD3 does not localize in mitochondrial RNA granules, which are sites of processing and maturation of mtRNAs and ribosome biogenesis. Second, we generated FASTKD3 homozygous knockout cell lines by homologous recombination and observed that the absence of FASTKD3 resulted in increased steady-state levels and half-lives of a subset of mature mitochondrial mRNAs: ND2, ND3, CYTB, COX2 and ATP8/6. No aberrant processing of RNA precursors was observed. Rescue experiments demonstrated that RAP domain is required for FASTKD3 function in mRNA stability. Besides, we describe that FASTKD3 is required for efficient COX1 mRNA translation without altering mRNA levels, which results in a decrease in the steady-state levels of COX1 protein. This finding is associated with reduced mitochondrial complex IV assembly and activity. Our observations suggest that the function of this family of proteins goes beyond RNA processing and ribosome assembly and includes RNA stability and translation regulation within mitochondria.This work was supported by Consejería de Sanidad JCyL Grants BIO/VA20/15 (to M. S.) and BIO/VA21/15 (to M. A. D. l. F.), Roche Diagnostics S.L. (to M. S.), the Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Förschung Grant 310030B_160257/1 (to J. C. M.), iGE3, and the State of Geneva.Peer Reviewe
    corecore