13 research outputs found

    DFT exchange: sharing perspectives on the workhorse of quantum chemistry and materials science

    Get PDF
    In this paper, the history, present status, and future of density-functional theory (DFT) is informally reviewed and discussed by 70 workers in the field, including molecular scientists, materials scientists, method developers and practitioners. The format of the paper is that of a roundtable discussion, in which the participants express and exchange views on DFT in the form of 302 individual contributions, formulated as responses to a preset list of 26 questions. Supported by a bibliography of 777 entries, the paper represents a broad snapshot of DFT, anno 2022

    Understanding Substituent Effects on 29

    No full text

    Gauge effects in local hybrid functionals evaluated for weak interactions and the GMTKN30 test set

    No full text
    <p>The so-called ‘gauge problem’, due to the non-uniqueness of exchange-energy densities, is a fundamental challenge for density functionals depending on these energy densities, such as local hybrid functionals. We have recently demonstrated how gauge effects influence the potential-energy curves of the argon dimer, and other quantities depending on ‘non-physical’ Pauli repulsions introduced by incompatible gauges of (semi-)local and exact-exchange energy densities . Introduction of suitable calibration functions depending only on semi-local quantities allowed to correct for these deficiencies and suggested ways to obtain more accurate local hybrid functionals beyond the local spin density approximation (LSDA) exchange-energy density. Here we extend the study of the gauge problem by comparing a number of uncalibrated and calibrated local hybrids for (1) the potential-energy curves of further noble-gas dimers and (2) for the entire GMTKN30 test set and its individual subsets. We find that DFT-D3 dispersion corrections fitted to be compatible with uncalibrated local hybrids have to correct not only for missing London dispersion but also for gauge artefacts that make weak interactions too repulsive. This burden is taken away when using properly calibrated local hybrids, which perform much better for dispersion-sensitive quantities already without D3 corrections, and which require only the physically relevant dispersion to be corrected for. The present results suggest directions for further improvement of calibration functions for local hybrids.</p

    Influence of the Localization of Ge Atoms within the Si(001)(4 × 2) Surface Layer on Semicore One-Electron States

    No full text
    Adsorption complexes of germanium on the reconstructed Si(001)(4 × 2) surface have been simulated by the Si96Ge2Н84 cluster. For Ge atoms located on the surface layer, DFT calculations (B3LYP/6-31G**) of their 3d semicore-level energies have shown a clear-cut correlation between the 3d5/2 chemical shifts and mutual arrangement of Ge atoms. Such a shift is positive when only one Ge atom penetrates into the crystalline substrate, while being negative for both penetrating Ge atoms. We interpret these results in terms of the charge distribution in clusters under consideration
    corecore