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Abstract 

We derived the necessary conditions to wh ich the vector coupling coefficients (vcc) am• and bmn , 

describing atomic L,S-multiplets of pMd N and dNs' configurations (1 ",; N ",; 9, 1 ",; M ",; 5), 
should satisfy. It is shown that for two-open-shell systems under consideration the unknown vcc 
should satisfy not only usual restrictions resulting from the spheric symmetry, but also some addi· 
tional equation introduced in the present paper in the form of a postulate. vcc obtained were used 
for the ab initio calculations (by the general SCF coupling operator method) of several transition· 
metal atoms and ions with electronic configurations 3d'4p', 3p43d3

, and 3ps3d3
• To check the pre­

sented theory, we carried out a detailed comparison between these results and analogous data, 
obtained by the atomic Roothaan-Hartree-Fock method [2]. C 1993 John Wiley & Sons, Inc. 

1. Introduction 

The inner eleetronic levels in molecules detected by ionization are known to be 
dose to the pure atomie ones [1]. Therefore, to interpret the corresponding ex­
perimental data (such as X-ray, photoelectron, Auger spectra, etc.), one usually 
performs quantum chemical calculations for both the molecule under analysis 
and the corresponding isolated atom, and for their ions as weil. 

Within the framework of the restricted Hartree-Fock method (RHF), the atoms 
are calculated by the specialized atomic program [2,3], as the problem on ionized 
atom calculation is not completely resolved within the framework of general 
open-shell SCF theory (i.e., in the general eoupling operator (Gco) method [4-8]). 
In partieular, there are some difficulties in ealculating ionized atoms with two 
open electronic shells by the GCO method [9,10]. 

In the present paper, we propose a solution of this problem for atoms and ions 
with pNpd Nd electronic configuration (1 ~ Np ~ 5, 1 ~ Nd ~ 9). The calcula­
tion of sueh states is of interest, e.g., when interpreting the Auger spectra for 
transition-metal compounds [1]. 

However, the major interest of this problem is coneentrated on its theoretieal 
aspeet. As is known, to calculate an atom or a highly symmetrie moleeular system 

© 1993 lohn Wiley & Sons, Inc. CCC 0020· 7608/93/040363-21 
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with adegenerate o,pen electro,nic shell o,ne should take special measures to, coor­
dinate the following: 

(a) symmetry o,f a nuclear frame (o,f molecule or ato,m) with the symmetry of 
o,ne-electron o,pen-shell o,rbitals, and 

(b) symmetry of a nuclear frame with the symmetry o,f multielectron wave 
functio,ns, as weil. 

, , Probl~~Jl (a) w~s re~olved by ~ootb.al!n [11], who, def~n~d th,e~n~rgy functiom~k>L.'.' 
inthe ~HF theory to be an average expectatio,n value fo,r '~ll th~ deg~nerate t9t~~>.>;:,·. 

"' 'w~ve fUll9tio,ns of th~ stateun.der co.n~ideratio,n. ' '. ":: .. ;~, , . 
. Th~ s~ond problem (b)atises in mol~ular o,pen-shell systems o,f cubic, tetr<!.gQ~: .. 

. . Vlil,andicosahedral symJnetry ~~ well a.s in ato,ms with tbe o,pen d~sh~ll beingtQ.'~ " 
thc;:ir s~ific ("non~~oothaan", [12]) spectro,scopic states.'fhesolutio,n of ihjs"':, ., 
,pro.blem was o,btain~d in [10~ 14-14] fpr the systems with one OPen degenerate· ... 

'" ,,~*~trqqjcsliell (configut:atio,n~N).JI.l c,ase of more COQlPUc~ted:syst~ms with s~ii< 
,c;:r:aJ degep~J:"ate open. shells; s~~lt~s tr~n.sition-nietal io.ll~·\yitha: p~pdNd c6nfig~:r.a,~'~': 

, , t!(1), tQ~s' pro.ble.in ',was so,lv~:o,nly for states th<!.f appellr'i~olatedby spji{ 
, mul~ip!icity [9]. . , ., . ' 

To so\ve this pro,blem in general, we intro,duce.d a ll~W equation fo,r the det~r:,' 
m!J:latio,n of amn and bmn co,upling cc;>efficients [8],chara,cteri~ing the state l!,l)g 

'coqfigqration under consideration in, G~O method. Ibis e,q~atioll ~was introduÄe4" 
.~ .. ~ PQstu!ate, inaqclitjo,n to, .tlloseproPo,sed before [WL Tqe, validity o,f po~Jti;;, 

. l~ted~q(1a~ion was sl,lb~tantiate~:- Jly.~.()mpari.ng 'thl?r,~spl,is' .o,.fgc;:o (;alculatig~i/i., 
wi5P 's~D1ila~ data qJ:>taiped' '.VWlin, . thc;: fr:amewo,rk '. pf theatomic Ro,otba:~,it~~':, 
Hil,rtree-fock theo,ry [2]). HoWever, we failed in u,ngerstanging the phy~~~,a( 
meaning o,f this equation. . 

2. Possible. S(ates and Energy of Atom (ion) w,ith pNpdNd Electronic 
Config~ration 

The possible stat~.s of an ato,m with pNpdNd electronic configuratipQ 
(1 ~ Np ~ 5, 1 ~ Nd ~ 9) ar.e found v~a general rules [15] o,n the basis of corre-' 
sPo,ndingstates arising from tpe cOilfigMratio,ns pNp (lOg d Nd. L~t Lp and Sp be the 
vatues o,f o,rbit.al and spin angulll.r mgmenta in the system with pNp co,nfiguration, 
and L d and Sd be tho,se for d Nd configuration. Then, in thc L,S-co,upling approxi­
matio,n [15), possible values fo,r to,tal momenta, Land S, in the ato,m with pNpdNd 

co,nfiguration are as fo,llows: 

L = L p + L d, L p + L d - 1, ... , IL p - Ldl; 

S = Sp + Sd, Sp + Sd - 1, ... , ISp - Sdl. (1) 

Configurations o,f pNpdNd type give rise to a large number of states (L, S-multi­
plets), mo,st of them being multiple o,nes. Fo,r example, in the p4d 3 configuration 

, c • 

. :;.'.,,' 

.: '. 
,.",>, 
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eonsidered below, the following states are possible: 

P
4d3 __ 6G 6F 60(2) 6p 6S 

" '" 
41, 4H(3), 4G(5), 4F(8), 40(8), 4p(7), 4S(2), 

2K, 21(3), 2H(6), 2G(1O), 2F(12), 20(13), 2p(9), 2S(4). 

Here, the numbers in parentheses denote the number of states of the given sym­
metry. As with the simpler ease of atoms with dN eonfiguration, it is neeessary to 
be beyond the scope of RHF method to provide a variationally eorreet ealculation 
of the multiple states [15]. 

The state energy E(L, S, pNpd Nd) may be presented as a sum of items: 

(2) 

where E pp is interelectronie repulsion energy within open p-shell, E dd is that for 
d-shell, and E pd is interaction energy between the open p- and d-shells. E' is the 
remaining energy, being the same for all the states of the pNpd Nd eonfiguration. 

If the eonsidered L, S-multiplet of pNpdNd eonfiguration is not a multiple one, it 
may be easily shown that 

E pp = Epp(L, S, pNpdNd) = Epp(Lp, Sp, pNp) , 

(3) 

i.e., for nonmultiple states Lp, Sp and Ld, Sd quantities are still the "good" quan­
tum numbers. [In other words, two different nonmultiple L, S-multiplets with the 
same values of L p, Sp, L d, and Sd are different in energy (2) only by E pd term.] 
Below, we shall consider these states only. 

In the atomie theory [15], separate items of Eq. (2) may be expressed in terms 
of the Slater-Condon parameters: 

(4) 

(5) 

E pd = C~~)F~d + c~~)F~ + C~)G~d + C~~)Gtd. (6) 

The va lues of eoefficients, c(O), c(l), • •• , eharaeterizing the eonsidered L, S-multi­
plet and eonfiguration, are presented in Slater's monograph (see Vol. 11 in [15]). 
Item E', induding kinetie energy of eleetrons, eleetron-eore interaetion energy, 
ete., is not worked out in detail in the theory [15] [see Eq. (8) below). 

3. Equations to Determine Vector Coupling Coefficients 

Within the framework of the general eoupling operator (Gco) method [4-
8,16], the energy of atom with pNpd Nd eleetronie eonfiguration being in the 2S+1L 
state is as folIows: 

E(L,S,pNPd Nd) = E' + L Lfmfn(2amnJmn - bmnKmn ) , (7) 
m n 
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where the summation is carried out over all open-shell p- and d-orbitals: {m} = 

{n} = {p} Ei' {d}, and 

E' = 2LH/ck + L L(2hl - Kkl ) + 2Lfm{Hmm + L(2hm - Kkm)}. (8) 
k k I m k 

The subscripts k an<;I.1 ~re cJos~d-sll~U orbital numb~rs; fm is open-shell occ\lpa~ 
,tiQIl nUDlb~r, the latter b~ing equal to ~ither fp = Np/2np ~ Np/6 orfd '7 I'l:a/ 

':':;'~iidTNd/10.. .' ". " ,.'. "',:,,',, ' ", .', . < ' ,"';-:~;" 
';': Thec<;>efficients a";" 'and b,m;;, C;~li~(l':v~tor coupling cpefficients ,(vce) [J~]r:," 

'qefine th,~ electroniccQnfigupltion llIl().,:the ~tateof th~ system under:consj4ir':':" " 
,-ation . .In the-caseoftransitjon~metal~tQ,i:lls an~ ions with tlte open d-shell,th~s~i 
, "oef{icients are Ilot constant ~Ilddep~Ild <;>n the choice of degenerate üpen-shc;:R" 

prbitals basis set [10]. Below, we shall.suppo~e angular parts of p- andd-orpitals 
~~fi~ " 

'Ir ,= dx~, 
<., .• 

y =;opy, z = pz. '(9),: 

Tp simplify further fonnulas, introduc;e, the following designation: 

,th,en 

m n 

Thus, to calculate atoms and ions with pNp dNd configuration, it is necessary to 
determine the set of coefficients, amn and bmn (7), for each spectroscopic state_. 
Taking into considerationp- and d-shell degeneracies (np = 3, and nd = 5), in or­
eier to calculatethe ion with pNp dNd el~tronic configuration, one should detenI1Jlle 
2 X (np + nd)2 = 128 unknown coefficients, amn and bmn , which form m;ltricesof 
t1le following shape: 

app' apd 
, (12) 

adp add' 

where p,p' = x, y, z, and d, d' = u, 'Ir, 11", 8, 1)'. 

A general approach to find amn and bmn coefficients for the atoms with open 
d-shell was proposed in [10]. After being generalized a Httle, the results [10] may 
be also used in the considered case for two open shells. 

The first equation to determine unknown vcc amn and bmn resultant from [10] 
expresses a physical condition that L, S-multiplet energy within two different re­
stricted Hartree-Fock methods (i.e., within the atomic theory [15], and in the 
GCO method [4-8]) should be the same. Omitting the term, E', in Eqs. (2) and 
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(11), one obtains 

= E pp + E dd + E pd , (l3) 

where E pp , E dd , and E pd are defined by Eqs. (4)-(6). After substituting Eqs. (10) 
and (4)-(6) into Eq. (l3), the latter couples the unknown vcc amn and bmn and 
the known coefficients c(O), c(l), .... 

The second equation for vcc calculation proposed in [10] expresses a condition 
for one-electron open-shell orbitals to be degenerate. In case of pNp d Nd configura­
tion, there are two sets of degenerate open-shell orbitals, i.e., 

(p,l!. = x,y,z), (14) 

ed=e!!.; (d,4=u,1T,7T',5,5'), (15) 

where ep and ed are one-electron energies. 
In the open-shell SCF theory [4-8], one-electron energies are the eigenvalues of 

the general coupling operator, R: 

Rq,m = q,mem' (16) 

Using a general expression far R, derived by Hirao (see Eq. (3.8) in [7]), one ob­
tains the following relationship: 

em = (q,mIRIq,m) = (q,mIFmlq,m) = fm{ Hmm + ~ (2hm - Kkm ) + ~fnQmn}, 
(17) 

where Fm is the Fock operator for orbital q,m ([7], Eq. (2.1». Substituting Eq. (17) 
into Eqs. (14) and (15) and carrying out necessary transformations (10), we obtain 

(18) 

fp L Q dp + fd L Q dd' = fp L Q t!P + fd 2, Q!!.d' , 
p d' p d' 

(ed = e!!.;d,4,d' = U,7T,7T:5,l)'), (19) 

where designations in parentheses point at the equation origin [based on either 
condition (14) or (15»). 

Thus, within the framework of approach [10], to determine the vcc amn and bmn 

in the pNpdNd configuration, three fundamental relationships (l3), (18), and (19) 
are required. Relationship (18) is broken up into two independent equations 
(ex = ey and 6x = ez ), and relationship (19), into four equations, byanalogy, (The 
number of independent equations is determined by the inequalities p < P and 
d < 4, correspondingly). Each of these seven equations, in its turn, may be 
parted into severallinearly independent equations (see below). 
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4. Factorization of Eqs. (13), (18), and (19) 

To derive the equations, connecting the unknown vcc amn and bmn and the 
known quantities of c(O), c(1), • •• , in the explicit form, it is necessary to express 
Jmn and K mn integrals in Eqs. (10), (13), (18), and (19) in terms of the Slater­
Condon parameters [15]. 

Corresponding expressions were prl!sented in monograph [15] for case of com­
plex AOS, and in Illonograph [17] for the rt<al ones (the integrals, Jpp" Kpp' and hr, 
K dd·, as weIl asfour-indexeq OI'!es (d41 4if'». Similar expressions for the integral~', 
J pd = (pp I dd) and :K~=(pd I pd), i.h the' real AO'S basis set were obt~ined 'ir) 
[18]; we present the{Il belo~, (To simplify.tbe formulas, we use the designatiWls 
'0_ 0 2_ 2· ' •.. ' . . , 

.F - Fpd,F - F pd ,' .. ). 
"" ,,' " " ' ' 2 

. J 'dI=Fo ~ -F 2 
~<T, Y'!.., 3~ , 

,~'o 'i. 2 
Jzu'~F. +. F, .. ,:> ' .... , ,~5 

(20) 

Substituting the values of Qpd from Eqs. (10) and (20) and those of Qpp' an.d 
Qdd' from Ref. [15] into Eq. (13), anc! leveling separately the coefficients multi­
plied by Fgp, F~p, FSd, ... , G~d both at the left and at the right sides, nine linear 
nonuniform equations to determine 128 unknowns amn. bmn are obtained. 

Analogous substitution of Qmn values into each of two Eqs. (18) and each of 
four Eqs. (19) leads to 12 = 6 X 2 and 28 = 7 X 4 linear uniform equations, 
respectively. [After such substitution, there are 9, 6, and 7 Slater-Condon pa­
rameters in Eqs. (13), (18), and (19), respectively.] Thus, there are totally nine 
nonuniform and 40 uniform linear equations to determine 128 unknowns amn 

and bmn • 

The obtained set of equations is broken up (factorized) into three groups of the 
equations, with each group containing unknowns from only one block of matrices 
(12): {app.,bpp'}, {adtf, bdd'} and {adp,bdp,apd,bpd}' 

, .,~ 

'. >,,< 
. ~,"-

.: ,~ , " . 
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4.1. Equations for Determining Coefficients add' and bdd' 

The set of equations containing unknowns add' and bdd' includes three nonuni­
form equations derived from relationship (13). These three equations may be 
written as a single equation directly resultant from Eq. (13): 

/.2"" "" Q _ (O)FO + (2)F2 + (4)F4 
dLJ LJ dd' - Cdd dd Cdd dd Cdd dd· (21) 

d d' 

After substituting Slater-Condon parameters into Qdtf expression (10) and level­
ing separately the coefficients multiplied by F~d' Fad, and Fjd both at the left and 
at the right sides of Eq. (21), we derive three linear nonuniform equations cou­
pling unknowns adtf and bdd' with known coefficients d~) , d~), and d~. 

Corresponding uniform equations to determine adtf and b dd, are derived from 
the condition for one-electron d-orbitals degeneracy (19). Twenty-eight equations 
obtained above from Eq. (19) can be written as two general equations, one of 
which contains add' and bdd' unknowns only: 

(22) 

[As above, designations in parentheses point at the equation origin-see Eqs. (18) 
and (19).] The second equation derived from Eq. (19) and containing {adP' b dp} 

unknowns is presented below [see Eq. (27)]. 
Collecting into the left side of Eq. (22) all its terms and carrying out the above 

transformations, we obtain 12 = 3 x (nd - 1) linear uniform equations. Thus, 
taking into account Eq. (21), one obtains totally 15 = 3 x nd equations to deter­
mine 50 = 2 X nd X nd add', bdd' unknowns. 

By direct comparison, one may see that the obtained Eqs. (21) and (22) coin­
cide exactly with Eqs. (9) and (16) in [10] derived to determine vcc for the atom 
with dN configuration. This result means that vcc add' and bdd', obtained for the 
multiplet (Ld, Sd, dN), keep their values for all nonmultiple (nondouble) states 
(L, S, pNp d Nd), if Nd = N, and quantum numbers L, Sand Ld, Sd are coupled by 
relationships (1). 

By analogy, it may be shown that the coefficients app' and bpp' have the same 
values both for the (Lp, Sp, pNp) and for (L, S, pNp dNd) multiplets. The corre­
sponding equations are presented below without any detailed comments. 

4.2. Equations for Coefficients a pp' and bpp' 

f 2 "" "" Q - (0) F O + (2) F 2 • p LJ LJ pp' - C pp pp c pp pp, 
p p' 

LQpp' = LQpp'; 
p' p'-

(23) 

(24) 

After substituting Slater-Condon parameters into Qpp' expression (10) and level­
ing separately the coefficients multiplied by F gp and F ~p both at the left and at 
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the right sides of Eqs. (23) and (24), one obtains 6 = 2 x n p equations to deter­
mine 18 = 2 x n p X np unknowns a pp and bpp" 

4.3. Equations for coefficients adp, b dp , apd, and b pd 

Subtracting Eqs. (21) and (23) from Eq. (13), we obtain a nonuniform equa­
tion to deterwip,e the vcc adp, bdp , apd, and bpd • entering o,ff-diagon;il blocksof 
rQCitrice)i (12): 

, , I' I' ,~" ~ (Q Q') ~ '(OlFO ' (2lFo' (ll'G I (3lG 3 
JpJdL,.LJ pd + dp - Cpd ,pd+ Cpd pd, + Cpd ' pd + Cpd pd, 

,'p , d " 
(25) 

Byanalogy, subtracting Eqs. (24)and (22) from Eqs. (18) a,nd (19), Gorrespond­
illgly, one obtains two uniforro~qua:tipns: 

(26) 

LQdp ='LQ!!p;"(ed = e~,d < 4)" (27) 
p p 

JSquatipns (25)':"(27) allow the further simplification. Transforming Eq. (25) in 
tpeapqvemanl)er [see aq. (21) and the corresponding tex;t], we obtaina set of 
liu,ear:nonuni(orm equlldons: ' ' . 
. ". - , 

Mx ." 
,~ , x --.:. C(i~llJI' 1'. 
LJ ~ij j - pd JJpJd,. 
j-:I 

i = 1,2, ... , M~sp, (28) 

where Xj are n~_e adp, apd' bdp , and bpd unknowns, regulated in some definite way; 
Mx is I)l,lmJ;>er of unknowns; A ij are numerical coefficients; and M scp is number of 
Slater-Condon parameters (scp) in Eq. (25). (In the case under consideration, 
these values are Mx = 2 X 2 x np X nd = 60 and M scp = 4). 

Similar transformations in Eqs. (26) and (27) lead to the set of uniform 
equ~tions 

Mx 

LAijXj = 0; 
j-I 

i = M scp + 1, M scp + 2, ... ,MI (29) 

where MI is total number of Eqs. (28) and (29), equal to MI = Mscp x {I + 
(np - 1) + (nd - I)} = 28. [The number of equations, obtained separately from 
Eqs. (26) and (27), is equal to M scp X (np - 1) and Mscp x (nd - 1), respectively.] 

Thus, to determine 60 unknown vcc adp, bdp • Qpd, and bpd , one gets four nonuni­
form linear equations (28) and 24 uniform ones (29), i.e., there is some arbitrari­
ness in choosing these vcc. Below we shaII show that such arbitrariness is of an 
essential significance. Therefore, we analyze this set of equations and their solu­
tions for different configurations in more detail. 

(1) The set of uniform eqs. (29) does not contain the coefficients c(Ol, C(2l, ... , 
characterizing the state and configuration of the system under consideration. 
This means Eqs. (29) are valid for aIl the atoms and ions possessing pNpd Nd con-
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figuration with any possible Np and Nd values. Due to Aij coefficients rationality 
[arising on the basis of eoefficients rationality in Eqs. (20»), this set of equations 
may be solved in integers to avoid truneation errors under computer calculations. 
In the present paper, we use program [10] for analytieal solution of uniform 
eqs. (29) with rectangular Aij matrices. 

(2) Equations like (28) and (29) were considered in [10) first for the atoms 
with dN configuration, where the problem of arbitrariness appears too when 
choosing vcc add' and bdd" [In the last case, Mscp = 3, MI = 15, and Mx = 50-
see Eqs. (21) and (22).) As was shown in [10), such arbitrariness did not effeet 
physically signifieant results: total energy, density matrix, ete., did not depend on 
this arbitrariness as it should be. 

The vcc matriees Iladd,1I and Ilbdd'll, obtained in [10) for various nonmultiple 
states of dN eonfiguration, may be divided into two groups, in aceordanee with 
the known division of the states into "Roothaan's" and "non-Roothaan's" ones 
[12-14). In ease of the non-Roothaan states, for which d~) "'" d~) [10), at least 
one of these matriees must be a nonsymmetrie one: Iladd'1I "'" Iladd'IIT and/or Ilbdd,1I "'" 
Ilbdd,IIT, despite a large arbitrariness in ehoosing vcc (Mx - MI = 35). 

On the other hand, in ca se of the Roothaan-type states, for which c ~~ = c ~~) 
(10), there are no restrietions toward the shape Iladd'11 and IIbdd' 1I matrices, In par­
ticular, the eorresponding vcc may be obtained in the standard Roothaan' form 
[11): add' = a, and bdd' = b, where a = [-7d~) + N(N - l»)/I00fJ and b = 

-7d~) /lOtJ [10], 
(3) A similar analysis of Eqs. (28) and (29) for pN eonfiguration shows that the 

arbitrariness in the choice of the vcc app' and bpp' [Mx - MI = 12, see Eqs. (23) 
and (24») also does not influence the results of quantum chemical ealeulations. 
Therefore, below we use the va lues for these vcc, derived by Roothaan [11). 

(4) A quite different situation takes plaee in case of the vcc adp, bdp , apd, and 
bpd ' Here, a general solution of Eqs. (28) and (29) contains Mx - MI = 32 arbi­
trary parameters. Changing these parameters, one may obtain the different sets 
of vcc for each speetroscopie state. 

Using these vcc, we performed the ab initio calculations on the titanium and 
vanadium atoms and their ions with electronic configurations 3d l4p l and 3p53d3

, 

3p43d3
, respectively. The peculiarities of the ealculation scheme and the list of 

calculated states are presented below. 
These ealculations revealed a dependence of the calculated results (the total 

energy, expansion coefficients, one-electron energies Bp , Bd, ete.) on the choice of 
the arbitrary parameters, within the aceuraey with which vcc adp, bdp , apd, and bpd 
are determined, [Recall that vcc (add', bdti') and (app" bpp') were taken unchanged 
from [10) and [11), respectively]. 

Here it should be noticed that symmetry eharaeteristies of the electronie distri­
bution, sueh as the proper p- and d-shell degeneraey (14) and (15), as weIl as 
relationships (20) and [17) between the interelectronie repulsion integrals, were 
obtained correctly in all the calculations and did not depend on the arbitrary pa­
rameters choice. 

(5) The analysis of these results led us to the conclusion that the set of equa­
tions {(13), (18), and (19)} to determine vcc amn , bmn for the atoms and ions with 
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pNp d Nd configuration is necessary but not sufficient, and some additional equa­
tions are required. 

5. Additional Equation to Determine Coefficients atIp, btIp, apd, and bpd 

T",king into account the above arguments, an additional equation is needed to 
deter.mine vcc from the off-diagonal blpcks of matrices (12) only. 1'he desirable 
~qu~Üon,is thc followi~g: ' , ',., '" 

" ,.' 

'2LQ~ ~ ~,~QdP' 
,'pd" 'P, d, 

'r' ", ' ,(3Q} 

wl)ere, .in general, QPtl '"I', Qdp' 
'The.correctness of Eq. (30) issub§taptiated bel~w by cOIl}paril)g"tve resu1tsof , 

q~a,ntum ch,emical c1l1s:ulations obia~n~d, within 't~a different (l>l1,t'equiv1ilent) 
. ,Ha,itree-Fock methods, Le.,by· th,e .GCO method [4-8, l6] , an4'· :the atomic 
~ootha1ln~Hartree-Fock metQod [~] ,as weIl. H()wever, there is Il,ot any stri~t 
t.h~Qreticalsubstantiation of this fonpula yet, and thelatter nlay bereg1irdedas,1l 
~,~rt~in·P9~tu.ate (see also the qisc~s~iop inSection 7).' " , 
,By the.aboye technique, Eq: (30) is trapsformed into the set oUour uniform 
eqYll~ions: T'1US~ finally there ar:e.4 ~onl.miform liQear equations (25) apd 28,uni~ 

. fqrlllones {(25)~(27); .3.Q)} to determine, 60 unkno~n' vcc adp, bdp,ap'd; and bpd; 

f1ri~,· conseqll,eQtly, 28, aciditional arbitrllry:'relationshjps may,be u~.ed. . 
.' .,1\' fundamental'difference in this sc;>luiion from th,at described in·lh,e: previou,s 

;~,~t,on consists in th,e following: The, at9m,ic energy and other physi~afproperties 
~~lcldl;lted ~iththe .QseQf Eq. (30)d() notdepeQd on the choice ()f~ arbitniry 
P.a.rameters" as it should be. In allca.~es, Qew vall1,e~ of energy (see Table IV) be~ , 
~a:rneJower than thoseobtained in ,the previous section. ",' 

Tqpresent the obtained vcc adp, apd, b dp , and bpd in a convenient form, we used 
the additional "natural" relationships between them: 

a'lrX = a"..; a.ry = a'lr"; 

a X". = ax8 = axB';; .ay",. == ayB = ayB'; aZ!T = aZ!T'; az8 = azB' ,; (32) 
and similar relationships, (or the b dp and bpd coefficients (b;,.x=;= b uy ; ••• ; 

b~:;= bzB'). These relationships follaw i~ a natural way from Eqs. (25)~(27) and 
(30), until the unknowns a UX and auy; a'lrx and a"..; ... ; enter Eqs. (25)-(27) , 
and (30) with the same coefficients. Therefore, the additional relationships (31) 
and (32) do not change the number of linearly independent equations (32 equa­
tions totally), but reduce the number of unknowns from 60 to 38. 

Among these 38 vcc, there are only four physically independent ones, in accor­
dance with the number of independent coefficients in Eq. (25). (See the discus­
sion on this problem in [10]). As independent vcc, the following ones were 
chosen: 

aux = (4c(O) - 35c(2»)/240fpfd' 

QUZ = (4c(O) + 70C(2»/240 fpfd ; 

bux = (27 x 15c(l) - 4 X 245c(3»)/900 fpfd, 

b uz = (-36 X 15c(l) + 2 x 245c(3»/900fpfd; 

(33) 

(34) 
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where C(O) = C~~) = Np x Nd; C(Z) = C~~, •••• The other coefficients of adp and 
apd type, satisfying Eqs. (25)-(27) and (30), are expressed in terms of indepen­
dent coefficients (33): 

a".. = aTr'y = alS. = a/f. = (au. + 2a u.)/3, 

a.u = (5a1T)' - 3A I )/2 

a.". = (5a u• + A I )/6 

a.,,· = AI 

ayu = lOa"x - 9A z 

ay". = -5au• + 6A z 

ay.,,' = A z 

azq = -5a1T)' + 6A 3 

az'IT = Sau. - 4A 3 

(35) 

az6 = A 3 , (36) 
where AI. A z, and A 3 are some arbitrary parameters. Similar expressions for the 
bdp and bpd coefficients are derived from formulas (35) and (36) by replacing all 
aik coefficients simultaneously by the corresponding ones bik (Le., a.,..x is replaced 
by b ... x; a".'y by b,,-y; etc.), and also by replacing the arbitrary parameters AI. A 2 , 

and A 3 by BI. B 2 , and B3 , correspondingly. 

6. Vector Coupling Coefficients for Si d N Configuration 

The approach derived above may be also used to determine vcc for the transi­
tion-metal atoms (ions) with Si d N configuration (1 ~ N ~ 9). The coefficients 
adJ, bds and asd, bsd are defined from the following equations: 

(37) 

(38) 

2: Qsd = 2: QdJ, (39) 
d d 

which are similar to Eqs. (25), (27), and (30), respectively. (The coefficients, ass 

and bss , from the corrcsponding diagonal block in matrix (12), are zero: ass = 

bss = 0). Taking into account that lsd = F~d and Ksd = (1/5)F~ [15], and omitting 
the intermediate elementary transformations, one obtains the following solution 
of Eqs. (37)-(39): 

bus = b ... s = b,,'. = bISs = b/fs = b; 

2:asd = 5a, 2:bSd = Sb; 
d d 

where a = c~) /20/s/d = 1, and b = -dJ) /Id. 

(40) 

(41) 



" . " 

374 PLAKHUTIN, ARBUZNIKOV, AND TROFIMOV 

Thus, in the S i d N configuration, the coefficients, ads and bdso (d = (T, '1T, '1T~ 8,8') 
are determined uniquely (40) for each state, while asd, bsd coefficients are deter­
inined within the accuracy with some arbitrary relationships [there are only two 
Eqs. (41) to determine 10 coefficients]. In particular, one may put a,d = a = 1 
and bsd = b. 

7. Results 01 ClJlculatioJ:ls and Discussion 

By' fQrliiulas (31)-(36) wecalcul~tedthe vcc adp, bdp, apd,~nd "pd for the set of. 
,;,a~omic~iates arising from. theco~figl.!rations pS d J

,' p4 d3,C!ndp! d!, Th~ listof;' 
! s~at~~, .~sWel1 as C:oeffici~nt~ c ~~, 9W,'~ .. , n~cessary for~al.<;:l.!latiori, ispresented: 
, in:l'~bler \ . ,'" " ',' " , , 
", 'fables. 11 and 111 present ageneral form of the ßla~rice's IladJill, IlbdPII, Ilapdll, and 
'lIbpdllsatisfying Eqs. (25)-(27) and (30) and additional relati<;mships (32) and (33) 
for nonmultiple states of the pM dN configuration. '. 

,TABI,E 1. The coefficients c;/ i~ the expression for Epd energy [see Eqs. (6) and (25)]. 

Config\lration, 
s~a.te Fg., F 2 

pd G~ G~ 

p~d3, 'G 15 1/3~ -18/1? ' -P!9/245 
15 . ",", . , 31 , ,.(.3/35 -18/15' :-14~/245 "- '.> .' '" ~ , I1 '':''3/35 -'84/245 15. ':".18/15 ' , 

>'r", 

.. ~ 'I, • 

p\e,6Q 12 -',1/35 -18/15 -189/245 
~ 12 3/35 -18/15 -189/245 
41 12 3/35 -18/15 -129/245 
2K 12 -6/35 -18/15 -69/245 

p l d l ,3F 1 2/35 -6/15 -3/245 

TABLE 11. General form of lIapdll and Ilbpdll matrices, satisfying Eqs. (25)-(27) and (30) and addi­
tional relationships (31) and (32) for ~onmultiple states of pNpd Nd config\Jratipn." 

x y Z 

1~e!!IIT matrix 

u (5avy - 3A I)/2 10a". - 9A2 -5avy + 6A3 
1r (5a .. , + A I)/6 -5a .. , + 6A2 5a ... - 4A3 
'Ir' AI A 2 Sa ... - 4A3 
8 (5a ... + AI)/6 A2 A 3 
f/ (5a ... + A I)/6 A2b A3 

IIbe!!lf matrix 

u (5bory - 3BI)/2 lOb". - 9B2 -5bory + 6B3 
1r (5b .. , + B I)/6 -5b .. , + 6B2 Sb ... - 4B3 
1r' BI B2 5b ... - 4B3 
8 (Sb .. , + B I)/6 B2 B3 
f/ (5b ... + B I)/6 B2b B3 

• See footnotes to Table 111. 
bAI, A 2, A 3 and B., B2• B3 are arbitrary parameters. 

.~~ 

'". ' . 
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TABLE 111. General form of l!adp/l and IlbdplJ matrices, satisfying Eqs. (25)-(27) and (30) and addi-
tional relationships (31) and (32) for non multiple states of pNpd Nd configuration.· 

u '7f '7f' 6 6' 

l!adellT 
matrix 

x 0", 0", 0"Y 0", 0", 

Y 0", 
b 

0"Y 0", 0 .. , 0 .. , 

Z Oa. On, 0", 0"" 0"" 
/lbdellT matrix 

x ba , b .. , b"" b", b .. , 
y ba , b 

b"" b", b", b", 
z ba• b .. , b", b"" b"" 

• In Tables II and III, we present the transposed matrices IJadPlf, /lbdp/lT, IJapdIJT, and l!bpdljT. [The 
definition of the corresponding direct matrices IJadpll, /lbdPII, ... , is given in Eq. (12).J It should be 
emphasized that IJadPlf "" IJapd/l, IlbdPlf "" IJbpdll, etc.; see Table 11. 

b Coefficients 0"" 0"" 0 .. " and 0"" and similar coefficients of the b-type are determined in 
Eqs. (33)-(35). 

Table IV presents the results of the ab initio calculations on titanium and vana­
dium atoms and their ions, carried out by the general coupling operator (Gco) 
method [4-8] with the vcc obtained. The calculations were performed by the 
MONSTERGAUSS-81 program [19]; the details in calculation scheme were de­
scribed in [10]. (See also foot note to Table IV.) 

TABLE IV. Hartree-Pock energies of vanadium and titanium atoms and their ions' (calculation 
by the coupling operator method [4-8]). 

Atom 
(ion) 

y 

y+ 

Ti 

Configuration, 
state 

3dJ, 4p 
2H 

3pS3dJ, sG 
II 
11 

3p43dl, 6G 
6p 
41 
2K 

3d2, Jp 
3dl4pl, lp 

Origin Total 
of state energy, 

(Ld. Sd; Lp, Sp) (in au) 

-942.837196 
-942.749087 

4p(dl); 2p(pS) -941.072849 
2H(dl); 2p(pS) -940.971360 
2H(dl); 2p(pS) -940.900879 
4p(d l);.lp(p4) -938.748763 
4F(dl); lp(p4) -938.702954 
2H(dl); lp(p4) -938.531404 
2H(dJ); 10(p4) -938.450883 

-848.367900 
20(d1); 2p(pl) -845.342161 

aThe same Gaussian basis set was used to calculate all the states of vanadium atom and its ions 
(see basis set (14s9p5d)j[8s4p2d] with contraction scheme 3, for vanadium atom in [21,22]. Simi­
larly, the same Gaussian basis set [21,22) was used for calculation ofthe ground and excited states 
of titanium atom. 
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Comparison with the Results 0/ Calculations by the Atomic 
Roothaan-Hartreeo-Fock Method [2J 

For independent checking of the results, presented in Table' IV, we also calcu­
lated these systems within the framework of the atomic Roothaan-Hartree-Fock 
theory (expansion method) [2]. The calculations were perfprmed by the Huzi­

..Jl~ga' a,tQIl1ic prpgra,m (20]. .As the. ab9ve present~d meth.QQ~o calclda~e vcc for 
'.' pM d~cq~fig~,~a,ti()Il, isl>a,secl,.~n th~p.,~r~.l1t ,methqq [10] f9r:~\'1 cQQfigu,ratiop, we 

• J;,;~().h.~.ked jq~ r~stil~~,QfJ~e GC:9 calsula!,ip~~ [10] '::ls:w.eIL/:'~;;: ;;c" ' 
'J('if';:, " ~(:: ;"."':.{:' "'. ;, ,?~ ':.~ ,'''. ; 'i' . ," <'.:'. ,",/;.;:;~: 
,p': .~~\ ' ~,".:~ "- -,~" '" ,"',' '.",', 

,. '~':\'~;S~;:1,'~q~t~~Ura!i~t!;:,dN, .. :,',::" :"": '~':' :., ',,;:,::, ,';" " ,.:' ,:;. .,'o, > ,'. " 
,',,~i; ;;t~~,,' T~~Je :Yp,r~sents' th51' ~e~q~ts, 9fc;a;1~.qI4tiQns 'on :dl~ fir:lit~rgW ~rari$i~ioilatöIll,s '. 
"',i:f~~::(frRip SFt({.Gu), <;arried' 09t by jh~",~iq~ii~ Rrogr:~rp' [fQV,,~;s cpD}pa,red:to tb~" 
, .)~; \~~/~il1lila~g~ta Hg, 21];t()b~aineg 'by. t!tev~ci, me~hQd,ap:d .pythe,. atqJ;l!!~' ;R9Qtli~a,h,.:" 

.i:;·:''::':;:; f!~i"J'(e~::::FQclc~eÜiö~'as ~~l~:Base~ :Q~,tJie;~~a!a:p'reseht~q,;Qn~:;in~y' o~,s~ery~ th~:" 
';"; ."Y J4entlt}i ~,e.iw~~n"t9tal atomib'energies;.' 9piain:e~by,th~ GCQ"ro~tQq~wl~h' nOIJsym" 

;, metdc vc~ad;/ [10], and similar results, obtained'.within tb~ n·ah).eWQrk of the 
/,!!tPn1i.c:: th.epry,The ~o~pari~Qn beJw~~n tqe ()t,her>q~~culat~4y,allJ,,~s(s9chas <me- " 
. e,lectron, t?IJ~rgies ' 8i, expansion coeffic::~ent~ c /Li, et~.) alsO~,l!QWed;t~,~if cQmplete ' 

.;'- . ,- ',' . 
',"/. ';~~'.( ':;"-:,~' ~:'t~' . ~; ':;·i~.' : ~-< ._,,~"". '"' .• ;" .. " 

:,~,1:+-:)", . .:' .... ~i~.,,:<. . " ... ,<~,:.r;X~::i\',.:::~::, ' 
, Energy of t,I:1,~.first~row WlIfsi~if>I! ,~t~ms.(inau); ca.lculate,d~i tWg9jff~r~I!t~~~meth-~ Y};}:i~.' , 

, .'. ods,(Gaussian b~sisset (1.~s9p~d)/[8s4p2d] from R,ef, [~lr>." . ,"" 

Atom, 
state 

(configuration) 

Sc, 20 (d l) 
Ti, 3F (d2) 

V, 4F (d3) 
4p 
2G 
2H,2p 
2F 

Cr, So (d4
) 

Mn,6S (ds) 
Fe, So (d6) 

Co, 4F (d') 
Ni, 3F (d8) 

Cu, 20 (d9) 
2S (dlOs l ) 

SCF coupling 
operator method [4':8] 
. Calculation 

[10] 

-759.705047 
'-848.367900' 
-942.837196 
-942.771401 
-942.770986 
-942.749087 
-942.683500 

-1043.249620 
-1149.787155 
-1262,350361 
-1381.289383 
-1506.720591 
-1638.786455 
-1638.801243 

Atomic R.()o~h!llm-H~rtree­
Fo!=k theory [2] 

Calculation 
[21] 

-759.7050 
-848.3685 ' 
-9.42.8372 

-1043.2497 
-1149.7872 
-1262.3504 
-1381.2895 
-1506.7206 
-1638.7867 
-1638.8015 

Presen.t work 

-759.705048 
-848:367900 
-942,837196 
-942.771402 
-942.770986 
-942.749088 

-1043.249620 
-1149.787155 
-1262.350360 
-1381.289382 
-1506.720590 
-1638.786455 
-1638.801243 

a Contraction of the basis set [21]: CONTRACTION 3 for Sc to Fe, CONTRACTION 1 for Co 
to Cu. 



COUPLING COEFFICIENTS FOR TWO-OPEN-SHELL SYSTEMS 377 

identity.* Obviously, such coincidence substantiates the validity of the equations 
[10] used as the starting point in the present paper. 

Configuration pM d N 

Analogous atomic calculations were carried out for V2+ and V + ions and the Ti 
atom with the electronic configuration pM dN

• However, while checking the re­
sults of the GCO calculations, presented in Table IV, it became necessary to make 
more curious calculations, because of the following reason: The initial calculation 
on the ions with pM dN configuration by the program [20] with the use of the con­
tracted Gaussian basis sets [21] provided the results to be quite different from 
those obtained above by the GCO method (see Table VI). On the other hand, as 
was noted above, for the atoms with dN configuration, our results coincide com­
pletely with the literat ure ones (see Table V). 

To elucidate why in case of pM dN configuration the results do not match,t we 
carried out the additional calculations of these systems by the program in [20], 
using the saturated uncontracted basis sets of Slater' type orbitals (STO) [23]. 
Such calculations are known to yield the results, elose to the respective Hartree­
Fock limit. Moreover, we carried out also the numerical Hartree-Fock calcula­
tions of these systems by Froese-Fischer' program [24]. 

The analysis of the obtained results, presented in the first, second, and fourth 
columns of Table VI, reveals an error in the used version of the program [20]. 
(The states 31 and 11 of the configuration 3p53d3

, and 2K (3p43d3
), calculated with 

the use of the contracted Gaussian basis sets [21], turned out to be lower in en­
ergy than the respective Hartree-Fock limit.) Our analysis of the program [20] 
showed that only uncontracted basis sets might be used to calculate interelec­
tronic repulsion between the open p- and d-shells. The results of calculations, ob­
tained after required corrections, are presented in the third column of Table VI. 

The analysis of all the results, presented in Table VI, shows the data obtained 
with the use of different basis sets and the results of numerical RHF calculations 
to be in a proper correspondence in between. This seems to confirm a correct 
run of the program [20]. The comparison between the results, obtained by the 
atomic program with the use of the contracted Gaussian basis sets with the re­
spective GCO ones (Table IV), shows their complete identity, as it should be. 

Obviously, such coincidence is not a casual one and, therefore, it may be re­
garded as a proof for the validity of Eq. (30). Keeping it in mind, we present now 
some arguments to be the starting point for the authors when deducing Eq. (30). 

• The coincidence of the expansion coefficients C,.h obtained by two different RHF methods, is 
not, in general, needed. Strictly speaking, the coincidence should take place only for density ma­
trices, Pp = I(i>f;c,.;c.; (11). In the case under consideration, the identity of the expansion coeffi­
cients is explained by the canonical expression for the general coupling operator, R ([7), 
Eq. (3.8», used in [10] to determine the vcc. This canonical expression does not contain any arbi­
trary shift operators, in contrast to the equivalent expression for R, derived in [4]. 

tWe did not exclude the possibility for the GCO results from Table IV to be erroneous. 
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TABLE VI. Hartree-Fock energy (in au) ofTi and V atoms and their ions (Calculations by atomic 
programs [24] (numerical RHF calculation) and [20] (expansion metbod». 

Numerical Slater-type 
RHF orbitals basis 

State calculation set [23] Gaussian basis set [21 ]".b 

V (3d3) 
4F, -942.88420" -942.8~7196 ( -942.837196) 

" 2H -942.7988:t -942.749088,. ( -942.749088) 
V+(3e'3d3} " -

'. 
sG .~':"94J.151750 -941.15!j13d, -9~.1.0n84.9' < (-940:984340) . 

, 31' , ;z:941.042301 ,-941.041881", -9,4~.971}.6,O ( ~941.2418~0) .. ,' -,' ; 

11 ',:-940.968351. ~940.96?94,O· -940.9W879 ( ':"941.170938)· 
V++ {3243d3) " 

6G -9~~.937877_ -938<9~6430d ::"938,748763 ( -938.844251)' 
41 -9?8.698084~v -938.69,6470· -938.531404 ( -938.254622) 
2K -938.615780 -938.614398· -938.450883 ( :"'939.038088) 

. Ti Pd2) 
, 3F' -848.40575c -848.3,67900 ' (-848.~67900) 

Ti. {3d1421,~ 
'3F -848.235124, -848.~4872f ~845.342161 ' ( -845.159500) 

aThe same Gaussian.basis ser[21] was us~!i ,for all the states of the ~anac~1ium atom and its !ons 
(seefootnotes,to Tables IV and V). Similarly,the same Gaus,si,an basis stit [21] was used for botb 
states of titanium atom. 

bValues in pa~~ntheses are results of calclllations obtained before revealing an error inprogram 
[20] (see discussion in text). 

CData from Cle'menti and Roetti Tables [23]: 
d··Calculation using STO bllsis set (1Is6p5d) [23], optimized for theneutral atom V (3d3

) in 4F 
and 2H states, respectively. . 

fCalculations using STO basis set [23] for atom Ti (3d2, 3F), a<ided by four 4p-exponents from the 
basis set [23] for atom Ga (4pl, 2p), to describe a 4p-shell of the excited titanium atom. 

It should be emphasized that the argumentation to be' presented is not of a 
mathematical strictness, but just points at this equlltion origin. 

In the previous Section 4.3, one mentioned the dependence of one-electron en­
ergies, 8 p and 8d, as weIl as the total energy and other SCF characteristics, on the 
choice of the arbitrary parameters. Our analysis showed it to be necessary to put 
an additional restriction on YCC adp, bdp , Qpd, and bpd in order to exclude the de­
pendence of one-electron energies, 8p and 8d, on the arbitrary parameters choice. 
By Bq. (17), 8 p and 8d quantities may be presented as follows: 

8p = [pHpp + 8p(closed) + 8p(p') + 8p(d) 

8d = /dHdd + 8d(closed) + 8d(d') + 8d(P) • (42) 

Taking into account Eqs. (25)-(27), it may be shown that the requirement of 
the independence of 8p and 8d on thearbitrary parameters choice is equivalent to 
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the relationship 

2: 8p(d) = 2: 8d(P) , (30a) 
p d 

which leads directly to Eq_ (30). 

Appendix 

After this paper was completed, the authors succeeded in obtaining a mathe­
matical proof of Eq. (30a). Following the referee's recommendation, we included 
a brief derivation of Eq. (30a) into present paper; a more detailed discussion of 
some questions arising in this problem will be published elsewhere [25]. 

First of all, it is necessary to give some notes concerning the different formula­
tions of the SCF coupling operator method. To calculate two-open-shell systems 
such as transition-metal ions with a configuration pM dN by the SCF coupling op­
erator method, one may use two different formulations of this theory, i.e., the 
theory [4-8, 16], based on the energy functional (7), and a more general theory 
[7,8] in wbicb tbe following form of tbe energy functional is used ([8], Eq. (1-11»: 

E = 2: 2: [WijHij + 2: 2: (aij,kl(ijI kl) - ßij'kl(il1kj»], (A-1) 
i j k I 

where a ij, kl and ß ij, kl are the generalized supermatrices of the vcc and (ij I kl) are 
the four-indexed integrals: 

(ij I kl) = f 'Ä*(1)cP:(2)(1jr I2)l/Ij(1)1/I1(2) dV1 dV2. (A-2) 

(In tbis section, we use the indices i, j, k, and I for referring to all the occupied 
orbitals.) 

For tbe most of the open-shell systems, the expression (A-1) may be reduced to 
a more simple formula (7), containing only two-indexed integrals (Coulomb and 
exchange) [8-10,14,16,26]. Such a reduction is useful since it permits one to 
avoid using the four-dimensional supermatrices of the vcc and permits one to use 
existing open-shell quantum chemical programs. If such a reduction is possible in 
principle, then two considered approaches are equivalent, i.e., the matrices of the 
SCF coupling operators within these approaches are equal [7,8]. 

We wish to show that equations of type (30a) follow directly from the varia­
tional principle applied to the energy functional of a general form (A-l). Applica­
tion of tbe variational principle results in tbe Euler equations [7,8]: 

2: Fikll/lk) = 2: Il/Ij)Oji> 8ji = 8;7, (A-3) 
k j 

where Oji are the Lagrangjan multipliers ensuring the orthonormality of the 
orbitals (I/Ii II/Ij) = c5 ij , and Fij are the Hermitian Fock operators [8]: 

Fij = (wij/2)h + 2: 2: (Aij,kJkl - Bij,kIKkl), (A-4) 
k I 

A·· kl = (a·· kl + akl ··)/2 ,), ,), ,I)' 

Bij,kl = (ßij,kl + ßkl,ij)/2. (A-5) 
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[Equation (A-4) coincides with Eq. (7-11) of [8] if one puts aij,kl = akl.ij and 
ßij,kl= ßkl,ij'* A A 

The general CoulqplbJkl and exchange K kl operators entering Eq. (A-4) are de­
fined as follows [8]: 

f k, (1)cfJ(1) = [f cfJ:(2)cfJI (2)(1/rl2) dV2] cfJ(1) , 

,Kkt(1)~(1).;;,,:[f #(2)cfJ(2),<1/rl~) dV2 J;".1(1). (A~6) 
The definiti~n of the, ~ener~l' c,?upling operator Re valid forall CaSeS for. :.v.hich 

the Euler equations, ha~~.,th,e form; Qf Eq. (A-3) was derived bY,Hirao,:{[7], 
Eq. (5.9». In thedefiI:litiOn, thiscoupling operator satisfies the Hartree';f.ock " 
equations ([7J, Eq. ($-10», ' " , " 

. ·A~ . 

RlcfJi);= IcfJi)8i' 

(A-7) 

Thus, to prove the above formula (30a) using the general equation (A-7) fQr tbe 
eigenvalu~s 8i of thes~F coupling operatpr, it is necessary to concretiz.e ~q. (A-4) 
fot tbe system under consideration. .' 

Let us consider tbe open-shell electrpnicconfiguration 'YrI'Y~1I where 'Ylis tbe 
symmetry (il'reduciblerepresentatiön) of degenerate orbitals {cfJ'I1}, and 'YII is .that 
for the c1egenertlte orbitals {cfJ'I1J, and 'YI "t= 'YII. Wltbout logs of the generality, we 
<>mit the c1osed~sbell subsystem. In such a configuration, there are following non­
vanishing four~itldexed integrals: (pq I p/q/), (mn I m'n'), (pq I mn), and (pm I qn). 
(In referring to tbe individual orbitals, we use tbe indices p, q, p', q' for orbitals. 
ot the symmetry 'YI; m, n, m', and ö' for orbitals öf tbe symmetry 'YII, and i, j, k, 
ahd I for orbitals of either set.) 

tn these notations, the Fock opetators'Fpq, Fpm , and Fmp , Fmn ne<;essary forthe 
calculation of the degenerate eigenv~lues 8p and 8m, correspondiI:lgly, have, the 
form 

where 

Fpq = (w pq /2)h + Gpq(p'q') + Gpq(mn) , 

Fpm = Gpm(nq) + Gpm(qn) , 

Fmp = Gmp(nq) + Gmp(qn) , 

Fmn = (w mn/2)h + Gmn(m'n') + Gmn(pq), 

* A discussion of the coupling coefficients symmetry is presented in (25). 

(A-8) 

(A-9) 

, ' 
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The" Fock operator...s (A-8) do not contain any other operators of the G ij type, such 
as Gpq(p'm) and Gpm(m'n), since the matrix elements of the latter are ~qual to 
zero. For similar reasons, we omit for simplicity the one-electron part h of the 
Fock operators ,.,Fpm and Fmp , si~ce to caIculate Sp and 8 m by Eq. (A-7) , one 
needs only (4)pIFpm l4>m) and (4)mIFmp l4>p) matrix elements. 

From Eqs. (A-7) and (A-8) , it follows that the degenerate eigenvalues sp of 
open-shell ")'1 and similar values Sm of ")'11 may be presented as 

Sp = (w pp/2)Hpp + 8 p(I, I) + spei, 11) , 

Em = (w mm/2)Hmm + 8 m{lI,II) + Em(II, I) , (A-10) 

where Ep(I, I) is apart of the one-electron energy sp corresponding to the mutual 
electronic repulsion within the open ")'1 shell and Ep(I,II) is apart of the sp aris­
ing due to the coupling between open electronic shells ")'1 and ")'n. The notations 
of the individual terms in Eqs. (A-10) are similar to those in Eq. (42). In these 
terms, the above Eq. (30-a) to be proved may be expressed 

2: 8 p(I, 11) = 2: Em (lI, I) . (A-lI) 
p m 

The left and the right sides of Eq. (A-ll) are equal to 

2: Ep(I, 11) = 2: 2: (4)pIG pq (mn)l4>q) + 2: 2: (4)rIFpml4>m), (A-12) 
p p q p m 

(A-13) 
m m n m p 

correspondingly. Comparing the right sidcs of Eqs. (A-12) and (A-13), one can 
see that their first terms are equal to each other since 

Therefore, to prove Eq. (A-ll), we shouIJ prove the equality 

(A-15) 
p m m p 

where 

(A-16) 

[Eq. JA-16) follows from the condition of the Hermiticity of the Fock opera-
+ " ] tors F pm = Fmp , [8]. 



382 PLAKHUTIN, ARBUZNIKOV, AND TROFIMOV 

Keeping in mind Eq. (A-16), let us s~ow that the sums of matrix elements in 
both left and right sides of Eq. (A-15) are real values. The left side of Eq. (A-15) 
may be presented as 

L L (cPpIFpmlC;Pm) = L L (c;ppIFpklcPk) - L L (cPpIFpqlcPq), (A-17) 
p m p k P q 

where both tbe terms in right side of Eq. (A-17) are real val4es, since 

, . (A-18) 

. , 

'. L L (cPpIFpqlcPq) ~ LL (cPqIFqplcPp)= L L (c;ppJFpqlc;pq)*, . p q . "', p. q' " p. '~q .' (;\-19) 

[8p~ is a diagonal L~grangian multiplier (se,e Eq.(A-3)~] Therefqr~, the sUpl of 
the complex matrix elements in the leH si~e of Eq. (1\-15) is ~he re~l value,~lOd, 
c()nsequently, th~ left and the right sides of Eq. (A-15) are.equal. Taking into 
ac,count Eqg. (A-14) 'and (A-1?),one may conclude that the right siqes of 
Eqs. (.A.-12) and (A-13) are equal to' each other. Tbe latter is tbe proof of 
Eqs: (A-ll) and (30-a). 
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