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Abstract

We derived the necessary conditions to which the vector coupling coefficients (vcc) am, and by,
describing atomic L,S-multiplets of p™d" and d“s' configurations (1 <N <9, 1 s M <),
should satisfy. It is shown that for two-open-shell systems under consideration the unknown vcc
should satisfy not only usual restrictions resulting from the spheric symmetry, but also some addi-
tional equation introduced in the present paper in the form of a postulate. vcc obtained were used
for the ab initio calculations (by the general scF coupling operator method) of several transition-
metal atoms and ions with electronic configurations 3d'4p’, 3p*3d°, and 3p°3d’. To check the pre-
sented theory, we carried out a detailed comparison between these results and analogous data,
obtained by the atomic Roothaan-Hartree-Fock method [2]. © 1993 John Wiley & Sons, Inc.

1. Introduction

The inner electronic levels in molecules detected by ionization are known to be
close to the pure atomic ones [1]. Therefore, to interpret the corresponding ex-
perimental data (such as X-ray, photoelectron, Auger spectra, etc.), one usually
performs quantum chemical calculations for both the molecule under analysis
and the corresponding isolated atom, and for their ions as well.

Within the framework of the restricted Hartree—Fock method (RHF), the atoms
are calculated by the specialized atomic program [2, 3], as the problem on ionized
atom calculation is not completely resolved within the framework of general
open-shell scr theory (i.e., in the general coupling operator (Gco) method [4-8]).
In particular, there are some difficulties in calculating ionized atoms with two
open electronic shells by the cco method [9, 10].

In the present paper, we propose a solution of this problem for atoms and ions
with pNed™ electronic configuration (1 < N, <5, 1 < Ny <9). The calcula-
tion of such states is of interest, e.g., when interpreting the Auger spectra for
transition-metal compounds [1].

However, the major interest of this problem is concentrated on its theoretical
aspect. As is known, to calculate an atom or a highly symmetric molecular system
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with a degenerate open electronic shell one should take speciai measures to coor-
dinate the following:

(a) symmetry of a nuclear frame (of molecule or atom) with the symmetry of
one-electron open-shell orbitals, and

(b) symmetry of a nuclear frame with the symmetry of multielectron wave
functions, as well.

. Problem (a) was resolved by Roothaan [11], who defined the energy functior a

. wave functions of the state under consideration.
-The second problem (b) arises in molecular open-shell systems of cubic, tetrag
" nal, and icosahedral symmetry as well as in atoms with the open d-shell bemg
their specrfrc (“non-Roothaan” [12]) spectroscopic states. The solution of t}
_problem was obtained in [10, 12 -14] for the systems with one open degenerate "

1 degenerate open shells; stich-as transrtlon-metal ions:with a pMrdM confrgu

.- -To solve this problem in general we mtroduced a new. equatron for the deter—,.
mination of a,, and b, coupling coefficients [8], ‘characterizing the state and
-configuration under consideration in Gco method. This equation was introduced
B "as a postulate, in ‘addition to those proposed before [10]. The- validity of post
lated equation was substantiated _by comparing the results of " Gco calculatio
'w1th ‘'similar data obtained wrthm the framework of the -atomic Roothaa
.Hartree-Fock theory [2]). However, we failed in understandmg the physi
" meaning of this equation. :

2. Possible States and Energy of Atom (ion) with p’*d™* Electronic
Configuration

‘The possible states of an atom with pMed™ electronic . configuration
(1 = N, = 5,1 < Ny = 9) are found via general rules [15] on the basis of corre-
’spondmg states arising from the conflguratrons p"»and d™. Let L, and S, be the
values of orbital and spin angular momenta in the system with pNp confrguratron
and L, and S, be those for d™ configuration. Then, in the L,S-coupling approxi-
mation [15], possible values for total momenta, L and S, in the atom with p™rd™
confrguratron are as follows:

L=L,+LsyL,+Ls—1,...,[L, — La[;
S=S,+84S, +Ss—1,...,IS, — Sl )

Configurations of p™ed™¢ type give rise to a large number of states (L, S-multi-
plets), most of them being multiple ones. For example, in the p*d® configuration
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considered below, the following states are possible:
p4d3 - GG’ 6F, 6D(2), 6P, 6S,
‘L *H(3), ‘G(5), ‘F(8), ‘D(8), ‘P(7), *S(2),
K, 1(3),2H(6), *G(10), °F(12),’D(13),’P(9), 2S(4) .

Here, the numbers in parentheses denote the number of states of the given sym-
metry. As with the simpler case of atoms with d™ configuration, it is necessary to
be beyond the scope of RHF method to provide a variationally correct calculation
of the multiple states [15].

The state energy E(L, S, p"*d"4) may be presented as a sum of items:

E(L, S,prde) =F + Epp + Edd + Epd’ (2)

where E, is interelectronic repulsion energy within open p-shell, E 4 is that for
d-shell, and E,q is interaction energy between the open p- and d-shells. E’ is the
remaining energy, being the same for all the states of the p™*d™* configuration.

If the considered L, S-multiplet of pNed™¢ configuration is not a multiple one, it
may be easily shown that

Epp = Ep(L,S, prde) = EPP(LP’SPYPNP)’
Ew = Eaw(L,S,p™d") = Eg(L4,Se,d"), 3)

i.e., for nonmultiple states L, S, and L4, Sq quantities are still the “good” quan-
tum numbers. [In other words, two different nonmultiple L, S-multiplets with the
same values of L,, S, Lg, and S, are different in energy (2) only by E, term]
Below, we shall consider these states only.

In the atomic theory [15], separate items of Eq. (2) may be expressed in terms
of the Slater—-Condon parameters:

— (OO )} < I
Ep = cs()p)Fpp + Cl(’P)FPP’ (4)
0)y 0 oy Hyd
Ew = C((id)Fdd + C((id)Fdd + Cc(id)Fdd; (%)
Epa = ¢ QF% + cBF%L + cWGla + ¢ G- ©)

The values of coefficients, ¢, c™™, ..., characterizing the considered L, S-multi-
plet and configuration, are presented in Slater’s monograph (see Vol. II in [15]).
Item E’, including kinetic energy of electrons, electron—core interaction energy,
etc., is not worked out in detail in the theory [15] [see Eq. (8) below].

3. Equations to Determine Vector Coupling Coefficients

Within the framework of the general coupling operator (Gco) method [4-
8, 16], the energy of atom with pM*d™ electronic configuration being in the **'L
state is as follows:

E(L,S,p™d™) = E' + X 3 fufu(2@mndmn — DmnKumn) )
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where the summation is carried out over all open-shell p- and d-orbitals: {m} =
{n} = {p} © {d}, and

E’ = ZZHM + 2 E(ZJ[‘I - Kld) + 22fm{Hmm + 2(2ka - Kkm)}' (8)

The subscripts k and [ are closed- shell orbital numbers; f,, is open-shell occupa-
.tion number the latter. bemg equal to either f,, N;/2n, = N,/6 or fd N/
The coeffnclents a,,,,, and b,,.,., ca‘ > ector couplmg coeffxcwnts (vcc) [1
define the electromc conﬁguratxon and the state of the system under- conside

* l;',:atlon In the-case of transmon-metal atoms and ions with the open d-shell, these :
" . coefficients are not constant and depend on the choice of degenerate open- shell RO

- orbitals basis set [10]. Below, we shall suppose angular parts of p- and’ d—orbntals'» b
- to be fixed S

o= dzz, T= dxz§ ‘”,"= dyz, 6= d.xz—yzy L& = dxy; )

- To s1mplnfy further formulas mtroduce the followmg demgnatnon o
; . ) Q ‘_ 2aanmn b(nn Kmn ’ (10)
" “_A'_;A;“t‘hmen ‘ T . R : ’
B(L,S,p%d") =B + S S fufy Qo oay s

Thus, to calculate atoms and ions with p™? d™ configuration, it is necessary to
determine the set of coefficients, an, and b... (7), for each spectroscopic state.
Taking into consideration p- and d-shell degeneracies (n, = 3, and ny = 5), in or-
der to calculate the ion with p™» d™¢ electronic configuration, one should determine
2 X (np, + n,,)2 = 128 unknown coefficients, @. and b.un, which form matrlces of"
the following shape: ~ ,

Qo | Gpa
[ , (12)
Qdp | Qda

where p,p’ = X,Y,2, and d,d’ = o, w,,8,8'.

A general approach to find a,., and b,., coefficients for the atoms with open
d-shell was proposed in [10]. After being generalized a little, the results [10] may
be also used in the considered case for two open shells.

The first equation to determine unknown vcc @, and b,,, resultant from [10]
expresses a physical condition that L, S-multiplet energy within two different re-
stricted Hartree~Fock methods (i.e., within the atomic theory [15], and in the
Gco method [4-8]) should be the same. Omitting the term, E', in Egs. (2) and
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(11), one obtains
;l: ;fmanmn = fg E ZQpp' + fg§ ;Qdd’ + fpfdz ;(de + de)

=Ep + Ew + Epa, (13)

where E,, Eq, and E 4 are defined by Eqs. (4)-(6). After substituting Eqgs. (10)
and (4)-(6) into Eq. (13), the latter couples the unknown vcc a., and b,., and
the known coefficients ¢@, ¢V, . ...

The second equation for vcc calculation proposed in [10] expresses a condition
for one-electron open-shell orbitals to be degenerate. In case of p™» d™ configura-
tion, there are two sets of degenerate open-shell orbitals, i.e.,

&=28; (pp=xY2), (14)
&4 = &y; d,d=o,m,78,8), (15)
where g, and &, are one-electron energies.

In the open-shell scF theory [4-8], one-electron energies are the eigenvalues of
the general coupling operator, R:

R = bntnm. (16)

Using a general expression for R, derived by Hirao (see Eq. (3.8) in [7]), one ob-
tains the following relationship:

€m = (¢mlR|¢m> i (¢m'Fm|¢m> = fm{Hmm + %(Zka - Kkm) + Eanmn} »

)
where F,, is the Fock operator for orbital ¢, ([7], Eq. (2.1)). Substituting Eq. (17)
into Egs. (14) and (15) and carrying out necessary transformations [10], we obtain

prQpp’ + fdepd = prQ;_Jp’ + fdgggd»

(& = & p,p, P = X,Y,2). (18)
f:2Q4 + fd?Qdd =204+ fdg;an",
P p
(84 = eﬂ;ds_da d = ag,m, 77’7 87 6’) s (19)

where designations in parentheses point at the equation origin [based on either
condition (14) or (15)].

Thus, within the framework of approach [10], to determine the vcc a,,, and by,
in the pN»d™ configuration, three fundamental relationships (13), (18), and (19)
are required. Relationship (18) is broken up into two independent equations
(ex = &y and &, = &,), and relationship (19), into four equations, by analogy. (The
number of independent equations is determined by the inequalities p < p and
d < d, correspondingly). Each of these seven equations, in its turn, may be
parted into several linearly independent equations (see below).
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4. Factorization of Eqs. (13), (18), and (19)

To derive the equations, connecting the unknown vcc a., and b,, and the
known quantities of ¢, ¢, ..., in the explicit form, it is necessary to express
Jm and K, integrals in Egs. (10), (13), (18), and (19) in terms of the Slater—
Condon parameters [15].

Corresponding expressions were presented in monograph [15] for case of com-

- plex Aos, and in monograph [17] for the real ones (the mtegrals Jops Koy and Jyz,
_K,,,, , as well as four-indexed ones {dd Idd’)) Similar expressions for the integrals,
Joa = (ppldd) and K,; = {pd|pd), in the Teal a0’s basis set were obtained in -
‘ [18], we present them below (To s1mphfy the formulas, we use the desngnatlons o
de, F,,d; TR T : : =

2

Jin = Jyw = Jor = Jow = Jo = o = Jy = Jy = F* + =F?,

F 357

Kxa = Kya = 15G + 245G ’
: 4 27 .
20. = —C + — ’
K =150 * 3250

24
K= Ky1r’ = K = KZ"’f = K = Kys = KY5 = Ky&' = %Gl + E‘EG},
K =k =K,=K —EG3 (20)j
A G A VT

Substituting the values of Q,; from Egs. (10) and (20) and those of Q,, and
Qur from Ref. [15] into Eq. (13), and leveling separately the -coefficients multi-
plied by FJ, FZ,, Fd, ..., G2 both at the left and at the right sides, nine linear
nonuniform equations to determine 128 unknowns @, .., are obtained.

Analogous substitution of Q... values into each of two Egs. (18) and each of
four Eqgs. (19) leads to 12 = 6 X 2 and 28 = 7 X 4 linear uniform equations,
respectively. [After such substitution, there are 9, 6, and 7 Slater-Condon pa-
rameters in Eqgs. (13), (18), and (19), respectively.] Thus, there are totally nine
nonuniform and 40 uniform linear equations to determine 128 unknowns amx
and b,,,. )

The obtained set of equations is broken up (factorized) into three groups of the
equations, with each group containing unknowns from only one block of matrices
(12) {app" bpp'}a {add" bdd’} and {adm bdp, Qpa, bpd}'
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4.1. Equations for Determining Coefficients aqy and baqs

The set of equations containing unknowns a4+ and b, includes three nonuni-
form equations derived from relationship (13). These three equations may be
written as a single equation directly resultant from Eq. (13):

22 2 Qu =cQF% + cQF + cQF4. (21)
d 4a&

After substituting Slater-Condon parameters into Q,, expression (10) and level-
ing separately the coefficients multiplied by Fdi, Fis, and F3, both at the left and
at the right sides of Eq. (21), we derive three linear nonuniform equations cou-
pling unknowns a,, and by with known coefficients ¢{3, ¢$2, and ¢$?.
Corresponding uniform equations to determine a,s and b, are derived from
the condition for one-electron d-orbitals degeneracy (19). Twenty-eight equations
obtained above from Eq. (19) can be written as two general equations, one of

which contains a4 and b unknowns only:
2Qu = Eng; (ea = &4,d < d). (22)
& d

[As above, designations in parentheses point at the equation origin—see Egs. (18)
and (19).] The second equation derived from Eq. (19) and containing {a,,, b4y}
unknowns is presented below [see Eq. (27)].

Collecting into the left side of Eq. (22) all its terms and carrying out the above
transformations, we obtain 12 = 3 X (n4 — 1) linear uniform equations. Thus,
taking into account Eq. (21), one obtains totally 15 = 3 X nq equations to deter-
mine 50 = 2 X ng X ng ags, bsy unknowns.

By direct comparison, one may see that the obtained Egs. (21) and (22) coin-
cide exactly with Egs. (9) and (16) in [10] derived to determine vcc for the atom
with d" configuration. This result means that vcc ayr and bgs, obtained for the
multiplet (L4, Sq, dV), keep their values for all nonmultiple (nondouble) states
(L,S,p"*d™), if Ny = N, and quantum numbers L, S and L, S4 are coupled by
relationships (1).

By analogy, it may be shown that the coefficients a,, and b,, have the same
values both for the (L,, Sp, p™*) and for (L,S, p™rd"?) multiplets. The corre-
sponding equations are presented below without any detailed comments.

4.2. Equations for Coefficients a,y and byy
fi 2 20w = e Fpp + cFp; (23)
Py

ZQW = ZQ!_’P'; (& = g,p < _E) . (24)

After substituting Slater~Condon parameters into Q,, expression (10) and level-
ing separately the coefficients multiplied by FJ, and F}, both at the left and at
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the right sides of Egs. (23) and (24), one obtains 6 = 2 X n, equations to deter-
mine 18 = 2 X n, X n, unknowns a,; and b,,.

4.3. Equations for coefficients aqp, bap, apa, and bpg
Subtracting Eqgs. (21) and (23) from Eq. (13), we obtain a nonuniform equa-
tion to determine the vCC a4y, bap, a0, and byq, entering off-diagonal blocks of
matnces (12) ‘
fpfdz E(de + Qd,,) = c“”F°d + c‘z’de + c“)G‘d + c‘”G3 (25)

By analogy, subtractmg Eqs (24) and (22) from Eqs (18) and (19), correspond-
mgly, one obtams two umform equatxons

EQ,M EQM,; (6= epp <_13) )

ZQ.,,, EQ@, Co=spd<d). (27)r

Equatlons (25) (27) allow the further simplification. Transformmg Eq (25) in
‘the above manner [see Eq. (21) and the correspondmg text] we obtam a set of
’ lmear nonumform equatlons , B

gxmemw mﬂh =,2puM@p - (28)
-
where xj a_re th_e @dp, Qpa, by, and b,, unknowns, regulated in some definite way;
" M, is number of unknowns; A;; are numerical coefficients; and My, is number of
Slater-Condon parameters (scp) in Eq. (25). (In the case under consideration,
these values are M, = 2 X 2 X n, X ng = 60 and My, = 4).

Similar transformations in Egs. (26) and (27) lead to the set of uniform
- equations :

My .

2Axi=0; i=Mg+1,Mg+2,...,M, (29)

j=1
where M, is total number of Eqs. (28) and (29), equal to M, = M, X {1 +
(np, — 1) + (ng — 1)} = 28. [The number of equations, obtained separately from
Eqgs. (26) and (27), is equal to M, X (n, — 1) and My, X (ng — 1), respectively.]

Thus, to determine 60 unknown vcc ag,, byp, ape, and by, one gets four nonuni-

form linear equations (28) and 24 uniform ones (29), i.e., there is some arbitrari-
ness in choosing these vcc. Below we shall show that such arbitrariness is of an
essential significance. Therefore, we analyze this set of equations and their solu-
tions for different configurations in more detail.

(1) The set of uniform egs. (29) does not contain the coefficients ¢®, c@, ...,
characterizing the state and configuration of the system under consideration.
This means Egs. (29) are valid for all the atoms and ions possessing p™rd™¢ con-
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figuration with any possible N, and Ny values. Due to A;; coefficients rationality
[arising on the basis of coefficients rationality in Egs. (20)], this set of equations
may be solved in integers to avoid truncation errors under computer calculations.
In the present paper, we use program [10] for analytical solution of uniform
egs. (29) with rectangular A; matrices.

(2) Equations like (28) and (29) were considered in [10] first for the atoms
with d™ configuration, where the problem of arbitrariness appears too when
choosing vcc aqr and bys. [In the last case, My, = 3, M, = 15, and M, = 50—
see Egs. (21) and (22).] As was shown in [10], such arbitrariness did not effect
physically significant results: total energy, density matrix, etc., did not depend on
this arbitrariness as it should be.

The vcc matrices [lasl| and [bs|, obtained in [10] for various nonmultiple
states of d™ configuration, may be divided into two groups, in accordance with
the known division of the states into “Roothaan’s” and “non-Roothaan’s” ones
[12-14]. In case of the non-Roothaan states, for which ¢{? # ¢{? [10], at least
one of these matrices must be a nonsymmetric one: |laur|| # |las|" and/or [|ba| #
[Ibasl", despite a large arbitrariness in choosing vec (M, — M, = 35).

On the other hand, in case of the Roothaan-type states, for which ¢$? = ¢
[10], there are no restrictions toward the shape ||as| and ||bas|| matrices. In par-
ticular, the corresponding vcc may be obtained in the standard Roothaan’ form
[11): aur =a, and by = b, where a = [-7c? + N(N — 1)]/100f3 and b =
—7cid /10f3 [10].

(3) A similar analysis of Egs. (28) and (29) for p" configuration shows that the
arbitrariness in the choice of the vcc a,y and b,y [M, — M, = 12, see Eqgs. (23)
and (24)] also does not influence the results of quantum chemical calculations.
Therefore, below we use the values for these vce, derived by Roothaan {11].

(4) A quite different situation takes place in case of the vcc ayp, by, aps, and
bya. Here, a general solution of Eqgs. (28) and (29) contains M, — M, = 32 arbi-
trary parameters. Changing these parameters, one may obtain the different sets
of vcc for each spectroscopic state.

Using these vcc, we performed the ab initio calculations on the titanium and
vanadium atoms and their ions with electronic configurations 3d'4p' and 3p®3d?,
3p*3d°, respectively. The peculiarities of the calculation scheme and the list of
calculated states are presented below.

These calculations revealed a dependence of the calculated results (the total
energy, expansion coefficients, one-electron energies &,, €4, etc.) on the choice of
the arbitrary parameters, within the accuracy with which vcc ag,, b4, @54, and by,
are determined. [Recall that vcc (a4¢, bas) and (a,y, b,y) were taken unchanged
from [10] and [11], respectively].

Here it should be noticed that symmetry characteristics of the electronic distri-
bution, such as the proper p- and d-shell degeneracy (14) and (15), as well as
relationships (20) and [17] between the interelectronic repulsion integrals, were
obtained correctly in all the calculations and did not depend on the arbitrary pa-
rameters choice.

(5) The analysis of these results led us to the conclusion that the set of equa-
tions {(13), (18), and (19)} to determine VCC @n, bma for the atoms and ions with
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p"»d™ configuration is necessary but not sufficient, and some additional equa-
tions are required.

5. Additional Equation to Determine Coefficients a4y, b4y, @pa, and bpy

Taking into account the above arguments, an additional equation is needed to
determine vcc from the off-dlagonal blocks of matnces (12) only. The desirable
equatlon 1s the followmg ' '

« z Ede 2 Ede’ o (30) .y

: where, in general Q,,d # Qd,, : SR “
‘The. correctness of Eq. (30) is substantlated below by comparmg the results of
quantum chemrcal calculatlons obtamed within 'two different (but: equlvalent)

j'Hartree—Fock methods, , by thc Gco method [4-8, 16] and-the atomic' -
_ - ‘Roothaan-Hartree~Fock method [2] as well. However, there is not any strict® .
i theoretlcal ‘substantiation of this formula yet, and.the latter may be regarded asa. .
' "'certam postulate (see also.the: dlscussmn in'Section 7). ' S

‘ By the .above technique, Eq. (30) is transformed into the set of four umform '
;equatlons "Thus; finally there are 4 nonuniform linear equations (25) and 28.uni- :

. form ones {(25) (27); .30)} to-determine 60 unknown' vcc @dpy baps- a,,,,, and b,,d,‘ o
. ~and consequently, 28 additional arbrtrary Télationships may be used. -

~A' fundamental -difference in this solution from that described in. the previous .

;,sectlon consists in the following: The atomic energy and other phys1cal properties . o

calculated with the use of Eq. (30) do not-depend on the choice of 28 arbitrary
_parameters,’ ‘as it should be. In all cases, new values of energy (see Table IV) be- "
came.lower than those obtained in the previous section.

To present the obtained vce @4y, @y, bap, and b,y in a convenient form, we used
‘the addmonal “natural” relationships between them:

Qox = Qoy;  Gax = Qm} Aoy = Qgy; A =ds;  asc=dsy; (31)
. Qxg = ax8 = ax&'y Qyw = Ays = Ay Qe = Qzo'5 aw = Qw5 (32)

‘and similar relatlonshxps for the bd,, and b, coefficients (bsx'= boy;...;
b = b.s). These relationships follow in a natural way from Egs. (25)~(27) and

(30), until the unknowns a,, and a,,; @ and a.;...; enter Egs. (25)-(27)

and (30) with the same coefficients. Therefore, the additional relationships (31)
and (32) do not change the number of linearly independent equations (32 equa-
tions totally), but reduce the number of unknowns from 60 to 38.

Among these 38 vcc, there are only four physically independent ones, in accor-
dance with the number of independent coefficients in Eq. (25). (See the discus-
sion on this problem in [10]). As independent vcc, the following ones were
chosen:

@y = (4c® — 35cD)/2401, £,
oz = (4 + T0cD)/240f, fs; (33)
= (27 X 15¢™ — 4 X 245¢™)/900f, f,
oz = (=36 X 15¢® + 2 X 245¢)/900f, fs; (34)



COUPLING COEFFICIENTS FOR TWO-OPEN-SHELL SYSTEMS 373

where ¢@ = ¢{Q = N, X Ng; ¢® =¢c@,.... The other coefficients of a,, and
ayq type, satisfying Egs. (25)-(27) and (30), are expressed in terms of indepen-
dent coefficients (33):

Apx = Qgy = Qg = Apx = (aax + Zao'z)/3a

Aoy = 05 = 5, = (480x — @02)/3; (35)
Axo = (Sa.y — 3A4,)/2
G = (5a02 + A1)/6
Ay = A,
ay, = 10a.x — 94,
ayr = —Sa,, + 64,

Qny

Ayy = A;
Ay = —S50n + 6A;
Qe = 5a,,, - 4A3

a5 = As, (36)
where A,, A;, and A; are some arbitrary parameters. Similar expressions for the
by, and b, coefficients are derived from formulas (35) and (36) by replacing all
aix coefficients simultaneously by the corresponding ones by (i.e., a. is replaced
by bax; axy by bay; etc.), and also by replacing the arbitrary parameters 4,, A,
and A4; by B, B,, and B;, correspondingly.

6. Vector Coupling Coefficients for s' d" Configuration

The approach derived above may be also used to determine vcc for the transi-
tion-metal atoms (ions) with s'd™ configuration (1 < N =< 9). The coefficients
a4, bas and a,y, by, are defined from the following equations:

fifa2(Qu + Qa) = cDFu + cPFA, (37
d

st = an (ed = 8(17d < 4) ) (38)

; Qu= ; Qus, (39)

which are similar to Eqgs. (25), (27), and (30), respectively. (The coefficients, a.
and b, from the corresponding diagonal block in matrix (12), are zero: as =
b, = 0). Taking into account thatJ,; = F% and K,; = (1/5)F% [15], and omitting
the intermediate elementary transformations, one obtains the following solution
of Egs. (37)-(39):

Qogs = Qqs = Qs = Qs = Ags = 4,

bos = b =bgy=bs = bg = b; (40)

Yau = 5a, Dby = 5b; (41)
d d
where a = c¢Q/20f.fs =1,and b = —c @ /fa.
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Thus, in the s’ d" configuration, the coefficients, a, and by, (d = o, , 7' 8,8)
are determined uniquely (40) for each state, while a.4, b,y coefficients are deter-
mined within the accuracy with some arbitrary relationships [there are only two
Egs. (41) to determine 10 coefficients]. In particular, one may put a,; = a =1
and by = b.

7. Results of Calculations and Discussion

By formulas (31) (36) we. calculated the vee ad,,, bd,,, a4, and b,,,, for the set of .

e stal es, as well as coefficients c‘(,?,’, g:,(,f,’, ., necessary for calculatlon, is presented

in; TableI S
. Tables 1I and 111 present a general form of the matrxces lladp" ]Ibd,,” |[a,d|| and
||b,,dl| satisfying Egs. (25)-(27) and (30) and additional relationships (32) and (33)
-for nonmultiple states of the pM d" configuration.

’ ‘TABLE 1. The coefficients c“‘) in the expression for E,,d energy [see Eqs (6) and (25)]

: Configilration,

© state . - Fps : vFSa G , G

15 1/35 ~18/15 - . ~189/245

15 0. ~3/35 C -18/15. . T —144/245°

15 -~ 23735 ©TN18/15 - —84/245

12 - -=1/35 - - -18/15 ° - -189/245 -,
v 12 3/35 . —18/15 ~189/245
9 12 " 3/35 —-18/15 —129/245 ;
K , 12 —6/35 —-18/15 ~69/245

pld\F 1 2/35 ~6/15 -3/245

TasLe II. General form of Ja,4|| and ||b,|| matrices, satisfying Eqs. (25)—(27) and (30) and addi-
tional relationships (31) and (32) for nonmultiple states of p™*d™ configuration.”

X y z
llﬂﬂllT matrix
o (5a.y — 3A4,)/2 10a.,, — 94, —Sa. + 6A4;
T (5a,. + A1)/6 —5a,; + 6A4; Saqx — 445
l' 4 A] Az Saﬂ - 4A3
] (San + Al)/6 Az A3
& (52, + A))/6 A A;
IIbEﬂT matrix
g (5b4y — 3B1)/2 106, — 9B, ~Sbny + 6B3
T (5b,. + B1)/6 ~5b,, + 6B, Sbox — 4B,
' B] BZ Swa - 4B3
] (5b5: + B1)/6 B, Bs
& (5bss + B1)/6 B B;

*See footnotes to Table III.
®A,, Ay, A3 and B,, B3, B; are arbitrary parameters.
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TasLE HI.  General form of |lag| and ||bs,|| matrices, satisfying Eqs. (25)-(27) and (30) and addi-
tional relationships (31) and (32) for nonmultiple states of p™*d™¢ configuration.?

o T e 8 &
llag]" matrix
x awl a"x a'y a" a"x
b
y Aox a'ry Qax QA ax 8 nx
z . @y Qs Aay Ay
T .
lbg,|” matrix
X b,x b" bty bn‘x wa
b
y qu b1ry wa b1rx bml
z be» bax by bvry bry

*In Tables 1I and I1I, we present the transposed matrices ag|", [bupll”, llaal™, and |by|". [The
definition of the corresponding direct matrices [lag|, bapl, - - - , is given in Eq. (12).] It should be
emphasized that llag|[" # llapdl, [basll” # Ibpll, etc.; see Table I1.

® Coefficients @gx, @oz, G, and @y and similar coefficients of the b-type are determined in
Egs. (33)-(35).

Table IV presents the results of the ab initio calculations on titanium and vana-
dium atoms and their ions, carried out by the general coupling operator (Gco)
method [4-8] with the vcc obtained. The calculations were performed by the
MONSTERGAUSS-81 program [19]; the details in calculation scheme were de-
scribed in [10]. (See also footnote to Table IV.)

TanLe IV. Hartree-Fock energies of vanadium and titanium atoms and their ions® (calculation
by the coupling operator method [4-8]).

Origin Total

Atom Configuration, of state energy,

(ion) state (L4, Sa; Lp, Sp) (in au)
A% 3d>, ‘F — —942.837196
’H — —942,749087
v* 3p%3d’, °G ‘F(d%); 2P(p°) -941.072849
1 *H(d’); *P(p%) —940.971360
' *H(d%); 2P(p°) —940.900879
v Ip*3d’, °G *F(d%);°P(p?) —938.748763
°F ‘F(d*; *P(p*) ~938.702954
1 2H(d%); *P(p*) —938.531404
X *H(d%); 'D(pY) ~938.450883
Ti 3d%,, °F - —848.367900
3d'4p', °F p(d"y; P(pY) —845.342161

*The same Gaussian basis set was used to calculate all the states of vanadium atom and its ions
(see basis set (14s9p5d)/[8s4p2d] with contraction scheme 3, for vanadium atom in {21, 22]. Simi-
larly, the same Gaussian basis set [21, 22] was used for calculation of the ground and excited states
of titanium atom.
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Comparison with the Results of Calculations by the Atomic
Roothaan—Hartree-Fock Method [2]

For independent checking of the results, presented in Table IV, we also calcu-
lated these systems within the framework of the atomic Roothaan-Hartree—Fock
theory (expansion method) [2]. The calculations were performed by the Huzi-
., naga’; atomlc program [20] As the above presented methodvto calculate vcc for
‘ ‘ N configuration, e,

Atomlc Roothaan-—Hartree—

scF coupling S Fock theory [2]
Atom, operator method [4-8] - e g
state "~ Calculation Calculation
(configuration) ' 0] [21] Present work
Se, ‘DY - © =759.705047 . —759.7050= . . —759.705048
Ti; °F (@) "-848.367900°, - —~848.3685 “ ' —848.367900
vV, °F(d%) -942,837196 —942.8372 —942.837196
‘p -942,771401 - —942.771402
G . ~942.770986 — —942.770986
H, %P —942,749087 - ~942.749088
3 —942.683500 - -
~Cr, DY) —1043.249620 —1043.2497 —1043.249620
Mn, ‘S (d°) —~1149.787155 —1149.7872 —1149.787155
Fe, °D (d%) ~1262.350361 ~1262.3504 —1262.350360
Co, ‘F (d)) —1381.289383 —1381.2895 —1381.289382
Ni, °F (d% -1506.720591 -1506.7206 —1506.720590
Cu, D (d%) ~1638.786455 —1638.7867 —1638.786455
s (d'%Y ~1638.801243 ~1638.8015 —1638.801243

® Contraction of the basis set [21]: CONTRACTION 3 for Sc to Fe, CONTRACTION 1 for Co
to Cu.
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identity.* Obviously, such coincidence substantiates the validity of the equations
[10] used as the starting point in the present paper.

Configuration p™ d"

Analogous atomic calculations were carried out for V2* and V* ions and the Ti
atom with the electronic configuration pMd". However, while checking the re-
sults of the Gco calculations, presented in Table IV, it became necessary to make
more curious calculations, because of the following reason: The initial calculation
on the ions with p™d™ configuration by the program [20] with the use of the con-
tracted Gaussian basis sets [21] provided the results to be quite different from
those obtained above by the Gco method (see Table VI). On the other hand, as
was noted above, for the atoms with d™ configuration, our results coincide com-
pletely with the literature ones (see Table V).

To elucidate why in case of p™d™ configuration the results do not match,’ we
carried out the additional calculations of these systems by the program in [20],
using the saturated uncontracted basis sets of Slater’ type orbitals (sto) [23].
Such calculations are known to yield the results, close to the respective Hartree—
Fock limit. Moreover, we carried out also the numerical Hartree-Fock calcula-
tions of these systems by Froese-Fischer’ program [24).

The analysis of the obtained results, presented in the first, second, and fourth
columns of Table VI, reveals an error in the used version of the program [20].
(The states *I and 'I of the configuration 3p*3d?, and K (3p*3d?), calculated with
the use of the contracted Gaussian basis sets [21], turned out to be lower in en-
ergy than the respective Hartree—-Fock limit.) Our analysis of the program [20]
showed that only uncontracted basis sets might be used to calculate interelec-
tronic repulsion between the open p- and d-shells. The resuits of calculations, ob-
tained after required corrections, are presented in the third column of Table VI

The analysis of all the results, presented in Table VI, shows the data obtained
with the use of different basis sets and the results of numerical RHF calculations
to be in a proper correspondence in between. This seems to confirm a correct
run of the program [20]. The comparison between the results, obtained by the
atomic program with the use of the contracted Gaussian basis sets with the re-
spective Gco ones (Table IV), shows their complete identity, as it should be.

Obviously, such coincidence is not a casual one and, therefore, it may be re-
garded as a proof for the validity of Eq. (30). Keeping it in mind, we present now
some arguments to be the starting point for the authors when deducing Eq. (30).

* The coincidence of the expansion coefficients ¢, obtained by two different RHF methods, is
not, in general, needed. Strictly speaking, the coincidence should take place only for density ma-
trices, P, = X ficuicyi [11]. In the case under consideration, the identity of the expansion coeffi-
cients is explained by the canonical expression for the general coupling operator, R ({7],
Eq. (3.8)), used in [10] to determine the vcc. This canonical expression does not contain any arbi-
trary shift operators, in contrast to the equivalent expression for R, derived in [4].

*We did not exclude the possibility for the Gco results from Table IV to be erroneous.
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TasLe VI. Hartree-Fock energy (in au) of Ti and V atoms and their ions (Calculations by atomic
programs [24] (numerical RHF calculation) and [20] (expansion method)).

Numerical Slater-type
RHF orbitals basis
State calculation set [23] Gaussian basis set [21]*"
vg_3d32
’ ‘F- = - —942.88420° —942.837196 (—942.837196)
SO = —942.79882 -942. 749088;. (—942.749088)
TG =941 —941.151313% . . . -941, 0723497_ o (F940.984340) -
T 7941042301 - . —941.0418815 © © —940.971360 <" . (—941.241850) - .. - ..
i 1 —940.968351. ;—940957940"’ ‘ —940, 900879';_ o (+941.170938)- . -
v aphady o o o
‘G —938.937877_ —93_8.935430‘ —938,748763' (—938.844251)
9 —938.698084 >~  ~938.696470° —938.531404 (—938.254622) .
. KT -938.615780 -938.614398° . . —938.450883 - (—939.038088)
Ti@3d) . S -
- ’F' Tt —848.40575° —848.367900 - . (—848.367900)
B .’F : .—348.‘2_‘3'5124, - —848.234872 —845.342161 (—845.159500)

‘The same Gaussran basrs set’ [21] was used for all the states of the vanadlum atom and its jons

(see footnotes to Tables IV and V), Similarly, the same Gaussian basns set [21] was used for both -
states of titanium atom.

®Values in parentheses are results of calculations obtained before revealmg an error in’ program
{20] (see discussion in text).

“Data from Clementi and Roetti Tables [23]

4 Calculation using sto basis set (11s6p5d) [23], optimized for the neutral atom V (3d%)in*
and *H states, respectively.

‘Calculations using sto basis set [23] for atom Ti (3d? °F), added by four 4p-exponents from the
basis set [23] for atom Ga (4p’, ’P), to describe a 4p-shell of the excitéd titanium atom.

It should be emphasized that the argumentation to be- presented is not of a
mathematical strictness, but just points at this equation origin.

In the previous Section 4.3, one mentioned the dependence of one-electron en-
ergies, &, and €4, as well as the total energy and other scr characteristics, on the
choice of the arbitrary parameters. Our analysis showed it to be necessary to put
an additional restriction on vcc ag,, byp, a5, and b,y in order to exclude the de-
pendence of one-electron energies, €, and €4, on the arbitrary parameters choice.
By Eq. (17), &, and &, quantities may be presented as follows:

g = foH,, + g(closed) + &,(p") + &,(d)
g4 = faHu + es(closed) + £,(d") + e4(p). (42)

Taking into account Egs. (25)—(27), it may be shown that the requirement of
the independence of g, and &, on the arbitrary parameters choice is equivalent to
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the relationship
2 g(d) = Ed: ea(p) (30a)
4

which leads directly to Eq. (30).

Appendix

After this paper was completed, the authors succeeded in obtaining a mathe-
matical proof of Eq. (30a). Following the referee’s recommendation, we included
a brief derivation of Eq. (30a) into present paper; a more detailed discussion of
some questions arising in this problem will be published elsewhere [25].

First of all, it is necessary to give some notes concerning the different formula-
tions of the scr coupling operator method. To calculate two-open-shell systems
such as transition-metal ions with a configuration p™d™ by the scF coupling op-
erator method, one may use two different formulations of this theory, i.e., the
theory [4-8, 16], based on the energy functional (7), and a more general theory
[7, 8] in which the following form of the energy functional is used ([8], Eq. (1-II)):

E = 2 2 [winij + Ek: Ell(aij,m(i“kl) - ﬁij.kl(i”kj»] ; (A-1)

where ajju and B;j . are the generalized supermatrices of the vcc and (ij| ki) are
the four-indexed integrals:

GilkD = [ ()@ Uradi (D (D) Vi Vs, (Aa2)

(In this section, we use the indices i, j, k, and 1 for referring to all the occupied
orbitals.)

For the most of the open-shell systems, the expression (A-1) may be reduced to
a more simple formula (7), containing only two-indexed integrals (Coulomb and
exchange) [8-10, 14, 16,26]. Such a reduction is useful since it permits one to
avoid using the four-dimensional supermatrices of the vcc and permits one to use
existing open-shell quantum chemical programs. If such a reduction is possible in
principle, then two considered approaches are equivalent, i.e., the matrices of the
scF coupling operators within these approaches are equal [7, 8].

We wish to show that equations of type (30a) follow directly from the varia-
tional principle applied to the energy functional of a general form (A-1). Applica-
tion of the variational principle results in the Euler equations [7, 8]:

ZFAikld’k) = 2 |85, 6; = 6, (A-3)
k i

where ; are the Lagrangian multipliers ensuring the orthonormality of the
orbitals (¢;| #;) = 8;;, and F;; are the Hermitian Fock operators [8]:

Fij= (wi/Dh + 2 = (Aiwdu = Biwkua), (A-4)
PR

A = (@iju + awi)/2,
B = (Biju + Bu.ij)/2. (A-5)
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[Equation (A-4) coincides with Eq. (7-II) of [8] if one puts aiju = au,j and
Blj k.= ﬂkl u

The general Coulomb Juand exchange Ru operators entering Eq. (A-4) are de-
fined as follows [8]:

Fawe = [ [ @80/ de]fﬁ(l),

“'sz'n,(-l')(ﬁ(l)%e[fﬁ(Z)dz(Z) (1/ru)dvz]¢a<1')- o NG

| The defmmon of' the general couplmg operator R valid for all cases for whlch; ‘

the Euler equatnons have. the form: of Eq. (A-3) was derived by Hirao; A7)
Eq (5.9). In the dcflmtlon thls couplmg operator satlsfles the Hartree—Fock’ N
equations ([7], Eq 5- 10)) o

R|¢>—|¢>e.,‘ .
<¢|2F.k|¢k> B @

Thus, to prove the above formula (30a) using the general equanon (A-7) for the
eigenvalues ; of the scr coupling operator, it is necessary to concretize Eq. (A-4)
for the system under consideration.

Let us consider the open-shell electronic configuration y; NMayn" where 'y; 1is the
symmetry (irreducible representatlon) of degenerate orbitals {¢,,}, and yy is that
for the degenerate orbitals {¢,,}, and y, # yi. Without loss of the generality, we -
omit the closed-shell subsystem. In such a configuration, there are following non-
vanishing four-indexed integrals: {pq|pq), (mn|mn’), (pq| mn), and (pm |qn).
(In referring to the individual orbitals, we use the indices p, q, p’; q for orbitals
of the symmetry ;; m, n, m’, and ' for otbitals of the symmetry yu, and i, j, k,
and | for orbitals of either set.)

In these notations, the Fock operators qu, pm and E mp> Fon necessary for the
calculation- of the degenerate eigenvalues &, and e,, correspondingly, have the
form

Pa (wpq/z)’; + épq(P'q') + épq(mn) ,
Fom = Gom(ng) + Gym(an) ,
Frp = Grp(nq) + Grp(am),
Frn = (@na/2h + G pu(mT) + Goun(pq) s (A-8)

where

éij(ld) = % El(Aij,klfkl - Bij,kllzkl)- (A-9)

* A discussion of the coupling coefficients symmetry is presented in [25].
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The Fock operators (A-8) do not contain any other operators of the G,J type, such
as G pq(P'm) and Gpm(m n), since the matrix elements of the latter are equal to
zero. For similar reasons, we omit for simplicity the one-electron part & of the
Fock operators Fprrl and Fm,,, since to calculate ¢, and &, by Eq. (A-7), one
needs only (¢,,|Fpm]¢m) and (¢m[Fmp|¢p) matrix elements.

From Egs. (A-7) and (A-8), it follows that the degenerate eigenvalues e, of
open-shell y; and similar values e, of y;; may be presented as

g = (wpp/2)Hp, + &,(L1) + &,(I,1D),
En = (Wan/2)Hgn + ex(ILI) + &,(IL1), (A-10)

where £,(1, I) is a part of the one-electron energy &, corresponding to the mutual
electronic repulsion within the open ¥, shell and &,(I, II) is a part of the &, aris-
ing due to the coupling between open electronic shells y; and vy, The notations
of the individual terms in Eqgs. (A-10) are similar to those in Eq. (42). In these
terms, the above Eq. (30-a) to be proved may be expressed

}p) (L 1II) = ;n) en(IL1). (A-11)

The left and the right sides of Eq. (A-11) are equal to
2o =3 §<¢p|épq(mn>l¢q> +23 (ol Fomldm),  (A-12)
ZenLD) = 3 ZpnlGm(pa)ltn) + 2 §<¢mlﬁmp|¢p>, (A-13)

correspondingly. Comparing the right sides of Eqs. (A-12) and (A-13), one can
see that their first terms are equal to each other since

(¢plqu,anmn - qu,mnlemn)ltﬁq) = (¢mlAmn,qupq - an‘qupq)|¢n)- (A'14)

Therefore, to prove Eq. (A-11), we should prove the equality

2 Z<¢p|FApm|¢m) = E E<¢m|ﬁmpl¢p>r (A-lS)
p m m p
where
(ol Fomlbmd = (ol Fplbm) = (Dl Frmplebp)®. (A-16)

(Eq. ,(A-16) follows from the condition of the Hermiticity of the Fock opera-
tors Fom = Fop, [8].]
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Keeping in mind Eq. (A-16), let us show that the sums of matrix elements in

both left and right sides of Eq. (A-15) are real values. The left side of Eq. (A-15)
may be presented as

2 2 (@l Fom|m) = 2 2<¢plﬁ,,k|¢k> - 2 2<¢p|ﬁ,,q|¢q>, (A-17)

whcre both the terms in right Slde of Eq. (A-17) are real values, since

> 2<¢p|1~'pkl¢k> -2 s R (5-18)7 E

2 2 (¢p|qu|¢q) = 2 2 (¢QIF‘1PI¢p> = E E (¢p|qul¢q)* . (A-lg)

'[0,,,, is a dlagonal Lagrangran multrplrer (sec Eq (A—3)] Therefore, the sum of -

the complex matrix elements in the left side of Eq. (A-15) is the real value, and,

consequently, the left-and the right sides of Eq. (A-15) are equal. Taking into 3
~_ account Egs.’ (A-14) ‘and (A-15), ‘one ‘may- conclude that the right sides of

Eqs (A-12) and (A- 13) are equal to each other. The latter is the proof of
" Egs: (A 11) and (30-a).
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