EQUATIONS FOR DETERMINATION OF VECTIOR COUPLING COEFFICIENTS IN SYSTEMS
WITH TWO OPEN SHELLS. IONS OF TRANSITION METALS WITH pMdN CONFIGURATION

B. N. Plakhutin and A. V. Arbuznikov UbC 539.192

An analysis is made of the necessary conditions that must be satisfied by vector
coupling coefficients (VCCs) ay, and bpn characterizing individual L,S-multiplets
in atomic configurations pMdN and sV (1K N9 L <KMLH). It is shown that in the
systems with two open shells, the sought VCCs satisfy not only the known limita-
tions that follow from spherical symmetry, but also a certain supplementary equa-
tion that is introduced in the present work in the form of a postulate. These VCCs
obtained in the present work have been used in ab initio calculations, by the single
coupling operator method, of atoms and ions of titanium and vanadium with configur-
ations 3d*4p?, 3p*3d%, and 3p®3d°.

INTRODUCTION

The inner electronic levels in molecules that are detected upon ionization are known to
be very nearly purely atomic levels [1]; therefore, in quantum-chemical interpretation of the
corresponding experimental data (x-ray, photoelectron, Auger, and other spectra), both the
molecule in question and the corresponding isolated atom (or their ions) are commonly calcu-
lated. In the Hartree —Fock (HF) method, the atomic states are calculated by the use of a
specially written atomic program [2, 3], since in the general Hartree—Fock theory of open
shells — the unified coupling operator (UCO) method [4-8] - the problem of calculating ion-
ized atoms is not completely solved. In particular, difficulty is recognized in using the
UCO method to calculate ions in states with two degenerate open shells [9, 10].

In this article we arﬁ pﬁesenting a solution of this problem for atoms (or ions) with
electronic configuration p“Pd d (1 KN, <5, 1< Ng<9). The calculation of such states is
of interest (for example) in interpreting Auger spectra of transition-metal compounds [1}.

The main interest in this problem, however, is in its theoretical aspect. As is known,
when calculating systems with degenerate open shells using the single-configuration (Hartree-—
Fock) approach, special measures are required for matching of the symmetry of (a) the nuclear
core and one-electron orbitals and (b) the nuclear core and many-electron fucntions of state.

Problem a was solved in general form by Roothaan [11], who proposed that the mean energy
of the term should be used as the energy functional in the Hartree—Fock method.

The second problem b arises in systems with a certain symmetry — in cubic, tetragonal,
and icosahedral point groups — and also in atoms with open d-shells in certain (''non-Roothaan'
[12]) spectroscopic states of the atoms. A solution of this problem was given in [10, 12-14]
for systems with a single degenerate open shell (electronic configuration YN).  For more com-
plicated systems thaﬁ hﬁve two or more degenerate open shells, such as transition-metal ions
with configuration p"'Pd d, solution of this problem, as suggested in [9], is impossible in
principle.

t

The salient feature of the solution found in the present work is that, in determining
vector coupling coefficients ap, and by, that are sought in the UCO method, a new equation
is introduced in the form of a postulate (this is in addition to the equations proposed pre-
viously in [10]). The validity of the postulated equation has been justified by comparing
the results of a calculation with data obtained within the framework of the atomic theory [2].
However, we have not been successful in clarifying the physical condition expressed by this
equation.
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POSSIBLE STATES AND ENERGY OF ATOM (OR ION) WITH pNPaNd CONFIGURATION

The possible states of existence of an atom with electronic configuration dede <
Ne<<35, 1< Ny 9 are determined by general rules [15], starting with the corresponding
states in configurations pNp and aNa, 1f Lp and Sp are the values of the orbital and spin
moments for a system with the electronlc configuration pNp, and Lg and S4 are the analogous
values for the configuration dNd, then the pOSS1ble values of the total moments L and S for
an atom with the electronic conflguratlon p NpaNd will be given by the following (here and
subsequently, we are assuming a Russell —Saunders L,S~bond [15]):

L=1L,+Lg Ly-+Lg—1, ...y ILs — Lgl;

(1)
S = Sp+Sd, Sp +Sd—'1, eey ISP—Sdl'

Configurations of the pNpdNd type give rise to a large number of terms (L,S-multiplets), many
of which are multiple. For example, in the p“d® configuration that is examined in the fol-
lowing material, the following states are possible:

pid® — G, OF, *D(2), °P, °S,
41, 2H(3), *G(5), *F (8),,‘1’17(8), 4P(7), 45(2),
K, 21(3), *H(), *6(10), *F(12), D(13); *P(E), *SA),

where the numbers in the- parentheses denote the number of terms with the given symmetry.
The same as in the simpler case of:.atoms with dN configuration, a: formally correct calcula-
tion of multlple terms (from the standpoint of the variational pr1nc1ple) requires going be—
yond the framework of the Hartree—Fock method [15]. A

.The energy of the term (L, S, pNPde) can be represented as a. sum of components from
individual shells v : S ,
E(L, S, pNPd‘\d)'= E'+ Epp +'Edd+ Epd’ : (2)

where Epp is the energy of interelectron interaction within the open p-shell; Egqq is the
analogous energy for the d-shell; Epd is the energy of interaction of open p- and d- shells;
E' is the remainder of the energy of the term, which is identical for all states of the con-
flguratlon pNpalNd. , . [

+If the particular L,S- multlplet in conf1gurat10n pNPde is 31ngular (not multlple), it
is not difficult to show that

N 2 '
Epp =_EPD(L1 8, ped"a) = Epp (Ly, Sp, p™0), - 3)
Ega = Eaa(L, S, p"pd™) = Eqq(Lq, Sq, a™a),
i.e., for nonmultiple terms, the values of Lp, Sp, Ld, and 84 are still "‘good" quantum numbers.
[In other words, if two different nonmultiple L,S-multiplets correspond to exactly the same

set {Lp, Sp, Lg, Sq}, then the energies (2) of these multiplets will differ only in the term
Pd ] Only such states will be con51dered in the follow1ng discussion.

In the theory of atomic multiplets [15], the individual terms in Eq. (2) are expressed
through Slater —Condon parameters

Ego = cipFho + cioF 3, (4)
Egq = c@F% + cEF3 + SIFs, (5)
Eps = ciFpa + cpaFpa + c5aGha + c5aGhas (6)

where numerical values of the coefficients c(9), c(l),..., characterizing the L,S-multiplet

and configuration that are being calculated, have been given in Slater's monograph [15, Vol.

II]; but the term E', which includes the kinetic energy of the electrons, the energy of their

interaction with the core, etc. [see below, Eq. (8)], is not detailed in the theory of [15].
EQUATIONS FOR DETERMINATION OF VECTOR COUPLING COEFFICIENTS

In the unified coupling operator (UCO) method [4-8, 16], the energy of an atom with
electronic configuration prde in a state described by quantum numbers L and S$ has the form

E (L’ S’ p'diNd) = E’ + g 2fmf7l (2aanmn - bmﬂKm”)7 (7)
n
where the summation covers all p- and d-orbitals of the open shell: {m} = {n} = {p} @ {d}; and
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E’ -_—-_2;[{);& - .—1;(2'}‘12[—1{”) "‘ngm(]{mm + Eh(Zka et Kkm))- (8)

The subscripts k and % number the orbitals of the closed shell; fn is the occupation number
of the open shell, which in the present problem assumes one of two possible values: fp =
Np/2np = Np/6 or f4 = Ng/2ng = Ng/10.

The coefficients ap, and by, which are termed vector coupling coefficients (VCCs), in
the UCO method assign the electronic configuration and state of the system {8, 16]. 1In
transition-metal atoms and ions, which have an unfilled d-shell, these coefficients, gen-
erally speaking, are not constants but rather depend on the specific selection of the basis
set of degenerate orbits of the open shell [10]. In the subsequent analysis it will be as-
sumed that the basis set of p- and d-orbitals has been assigned (fixed) as follows:

o=4ds n=dy I = dysy S=dg_p2 O = dxys : (9)
r=ps Y¥="Pp =P
In the interest of simplifying the subsequent formulas, we will introduce the notation
Omn = 28mnd mn — bmnKman-- (10)
Then,
E(L, S, prde) =E’ +§.§fmfnomn- (11)

Thus, for the calculation of atoms and ions with the pNpdNd configuration, it is necessary to
determine a set of coefficients ap, and by, of Eq. (7) for each state. Considering the di-
mensionality of the p- and d-shells (np = 3 and ng = 5), in calculating an ion with electronic
configuration pNPde it is necessary to determine 2 x (np+ ng)? = 128 unknown coefficients ap,
and by, forming a matrix of the type

Qpp’ Apd’

(12)

famn] =

adp dqq’

where p, p' =x, vy, z; d, d' = o, 7w, ', §, &'.

A general approach to the problem of finding the coefficients ay, and by, for atoms with
an open d-shell was proposed in [10]. With certain extensions, the results of [10] can also
be used in the case under consideration, with two open shells.

The first equation for determining the sought VCCs apy and bpy,, an equation that follows
from [10], expresses physically the condition that the energy of the L,S-multiplet must be
identical in the two different versions of Hartree—Fock theorem, i.e., in the atomic theory
of [15} and in the SCO method [4-8]. Omitting the term E' in Egs. (2) and (11), we have

Z ZlntnQrn =1 2 3 Qou + 14 3 3 Qur + fole 22 (Qea+ Qap) = Epp+ Eaa + Epa, (13)

where Epp, Eggq, and Epd are determined in Eqs. (4)-(6). After substituting Eqs. (10) and
(4)-(6) into Eq. (13), the resulting equation establishes the relationship between the un-
known VCCs apn and kpn and the known coefficients c(¢), c(1), . .|

The second equation for the determination of VCCs that was proposed in [10] expresses
the condition of degeneracy of an open shell. In the pNpdN¥d configuration there are two
degenerate open shells, i.e.,

al’ = el’_; (Pr E_= xv y, z)s (1[‘)
&1 =& (d, d =g, m, n', 8, §), . (15)
where €p and €4 are the one-electron energies.

In the Hartree—Fock method for open shells, the one-electron energies are the eigen-
values of the single coupling operator R

Rom = QmeEn- (16)
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Using a general expression for R that was obtained by Hirao, specifically Eq. (3.8) in {7],
we have

tm = {Pm ] Rl¢m> = {Pm | Fm l Pmy = fm{Hmm -+ F:(thm — Kpm) + ;anmn}y (17)

where Fy is the Fock operator for the orbital ¥m [7, Eq. (2.1)]. After substituting (17)
into (14) and (15) and performing the required transformations [10], we obtain

fp;Onp’ +fd§0pd=fp§0_ep"i'.fd§03d
(EP =Ep: P s pl =z,Y, z)a
H§0m+h§%w=H§Q@+h§%w

(e'd = €4, dt fzv d, =g, X, ﬂ,, 6, 6,)9

(18)

(19)

where the notations in parentheses of the type (Ep = ¢ep and p, P, p' = x, ¥, z) point out the
origin of the equation — from the condition of degeneracy (14) or.(15).

. Thus, within the framework of the approach of [10]; in calculating the VCCs ap, and
byn in the pNpdNd configuration, we have three basic relationships: (13), (18), and (19).
Equation (18) is broken up into two independent equations (ex = ey and ey = €;); and anal-
ogously, Eq. (19) is broken up into four equations. [The number of independent equations
in Eqs. (18) and (19) is determined by the inequalities.p < p and d < d, respectively.] With -
an element-by-element writing (see below), each of these seven equations, in turn, is broken
up into several linear equations. '

. FACTORIZATION OF EQUATIONS {(13), (18), (19)}

In order to obtain from Eqs,v(l3), (18), and (19), an equation in explicit form relating
the unknown VCCs apn and bgy to the known coefficients c(0), (1), . ., the. integrals Jyn and
Kpn in Eq. (10) must 'be expressed in terms of Slater —Condon parameters [15]. ' :

Corresponding 'expressions. ars given in the monograph{[LS]&fbr the case of complex AOs and
in the monégraph [17] for' real AOs (integrals of the ‘type of Jpp'> Kpp, Jdd', and Kdd*, and -

also four-index integrals <dd|d'd'>). Analogous expressions. in real AOs for integrals Jpd'= ..

<pp|dd> and Kpd = <pd|pd> were obtained in [18] and are given below. (For simplification of
the formulas, we have used the notation F° = Fpd> F? = Féd,...) : '
) ) .
o= de=P—g P,
JZ_0=FO+§4§F2’
Jen=Jyw =Tim= T = Jas=Jusr = Jyp = Iy =F° + Z P,
4 .
S = = = Jo = Fo_ 4 pa.
v Jy.-r, Jzs J s F 35F, (20)
1 , 18
Kx()':KyG:HGITmGS,

4 27
K — G+ 275(;3’

20 = 15
Ben=Kyw = Kez = Ky = Kug = Kugy = Ky = Kyyp = > 01 1,24
x1 yv =Ko =Koy = Kys = Kpyy = Kpp=Kypp = =G L = G
15 245 7 !
15
Kx:t’ = Ky;': = Kzé = K:é’ = ‘Z%Gs

After substituting into Eq. (13) the values of Qpd from Eqs. (10) and (20) and values of
Qpp' and Q4q' from [17], and equating individually the coefficients of Fﬁp, Fﬁp, F&d,...,Géd
in the left and righ sides, we obtain 9 linear inhomogeneous equations for the determination
of 128 unknowns ap, and bpyy.

An analogous substitution of values of Qp, into the two equations (18) and into the four
equations (19) gives (respectively) 2 x 6 = 12 and 4 x 7 = 28 homogeneous linear equations.
[In BEqs. (13), (18), and (19), after the indicated substitution, we find that there are (re-
spectively) 9, 6, and 7 Slater —Condon parameters.] Thus, in all we have 9 inhomogeneous and
40 homogeneous linear equations for the determination of the 128 unknowns ap, and bpg.
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The system of equations thus obtained is broken up (factorized) into three groups of
equations, each of which contains unknowns from only one block of the matrix (12): {app';

bpp'}: {add; bdd'}» {adp: bdp; apd’ bpd}-

Equations for Determination of Coefficients add' and bdqd’

The set of equations containing the unknowns agq' and bgq' includes three inhomogeneous
equations obtained from Eq. (13). These three equations can be written in the form of a
single equation that follows directly from (13),

2 ) ; .
fa dZ % Quar = cQFS + W Fia — cSiFia. (21)

After substituting the Slater ~Condon parameters into the formula for Qgq: (10) and
equating individually the coefficients of Fq, Fjq, and Fiq in the left and right sides of
Eq. (21), we obtain three inhomggeneous'linear equations relating the unknowns agqr and bggt

iy 0 2) (=
to the known quantities c a cia’? and Cdd .

The correponding homogeneous equations for the determination of agq+ and bgyqr are ob-
tained from the condition of degeneracy of an open d-shell (19). The 28 equations obtained
above from Eq. (19) can be written in the form of two general equations, one of which contains
the unknowns agqt and bgq' (and does not contain any other unknowns)

2Qaat = N Quur, (e =24, d<<d), (22)
. d d’ - -

where the notations in the parentheses indicate, the same as previously, the origin of this
equation — see Eqs. (18) and (19). The second equation obtained from (19), containing the
unknowns {agp, bgp}, is given below - see Eq. (27). :

Transferring all terms in Eq. (22) to the left side and performing the transformations
described above, we obtain 3 x (ng — 1) = 12 homogeneous linear equations. Thus, when we
take (21) into account, we obtain a total of 3 x nqg = 15 equations for the determination of
2 x ng x ng = 50 unknowns agq' and byq'.

Through a direct comparison, we are convinced that the equations (21) and (22) that we
have obtained do coincide exactly with Eqs. (9) and (16) from [10}, which were obtained from
the vector coupling coefficients (VCCs) in an atom with the dN configuration. This result
means that the VCCs agqt and bgq' that are calculated for the multiplet (Lg, Sq, d¥) remain
the same for all nonmultiple (not double) multiplets (L, S, pNpdNd) if Ny = N, and the quan-
tum numbers L, S, Ly and S4 are related to the equations (1).

It can be shown analogously that the coefficients app' and bpp' can also be taken as
identical for the multiplets (Lp, Sp, pNp) and (L, S, pNpdNd). The corresponding equations
obtained from Eqs. (13) and (18§ are given below without any detailed commentary.

Equations for Determination of Coefficients app' and bpp'

fi ;pzl Qppr = ciaogl;gp + cg—gi‘gm (23)
20w = Z0pr. (en=r2p P<p)- (24)
- 4 Ll
After substituting the Slater —Condon parameters into the formula for Qpp! (10) and
equating individually the coefficients of Fﬁp and Fﬁp in the left and right sides of both

equations, we obtain 6 equations for the determination of 18 unknowns app! and bpp'-

Equations for Determination of Coefficients adp, bdp, apd, and bpd

Subtracting Eqs. (21) and (23) from Eq. (13), we obtain an inhomogeneous equation for
the determination of the VCCs adp, bdp, apd, and bpd that appear in the off-diagonal blocks
of the matrix (12):

Ifa § § (Qua + Qup) = chiFpa -+ chaF3y — c§HGLe = G, (25)

An analogous procedure of subtracting Egs. (24) and (22) from Egs. (18) and (19), respec-
tively, leads to two homogeneous equations

Q=20 (=2 P<P) (26)
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200 =2Qu (ca=ts d<d) (27)

The relationships that have been obtained, Eqs. (25)-(27), permit further simplification. By
applying to Eq. (25) the above-described transformations [see Eq. (21) and subsequent text],
we obtain a system of inhomogeneous linear equations in the form

M,

j§1 Mijzj = cpi Vfofa, 1=1,2, ..., Mscp, (28)

where xj are the unknowns adp, apd, bdp, and bpd, ordered in a certain manner; My is the
number of unknowns; Ajj are numerical coefficients; Mscp is the number of Slater —Condon

parameters (SCPs) in Eq. (25). (In the present case, =2x 2 xnp xng =60, and Mggp =
4.)
Analogous transformations in Eqs. (26) and (27) lead to the set of homogeneous equations
(29) My - _"_ - ‘ ) ) ‘ -
E ?\'ux] = 01 i = AISCP _:,—. 17' .MSCP + 2a CEET -'M;y S cT . » (29)

where My is the total numbet- of 11near equatlons (28)- =(29), Mt = MSCP x {1+ (np—-1)+
(ng = 1)} = 28. [The numbers of homogerieous equations obtained individually from Egs. (26)
and (27) are Mgop (np — 1) and Mgcp * (ng — 1), respectively.]

Thus, for the determination of 60 unknown VCCs .adp, bdp, apd, and bpd', we have 4 in-
homogeneous and 24 homogeneous linear equations; i.e., there is a certain arbitrariness in
the selection of these VCCs. As will be shown subsequently, this. circumstance is very im- -
portant; and hence we will examine in more detail th1s system of equatlons and its solutions
for various conflguratlons ‘

The system of homogeneous equatiOns (29) does not contain the coefflcients c( )
c(z) .., characterizing the state of the system an the electronlc configuration; and 1t
is 1dent1ca1 for all atoms (or ions) with the configuration p NpdNd with all possible Np and
Ng. In view of the rationality of the: coefficients Aj3 [which follows from the rationality
. of "the coefficients and the -equations (20)], this system: can be solved in integers, thus
‘avoiding rounding-off errors in computerized calculations. ‘In the present work, we are
using a special procedure given in [10] for the analytical solution of the system of homo- -
geneous equations (29) with integral rectangular matrices Ayj.

2. Equations of the type of (28)-(29) for finding VCCs were examined for the first
time in [10] in application to atoms with the dN configuration, for which a problem also
arises in the arbitrariness in selecting the VCCs agq' and bgq' [in the latter case, Mgcp =
3, My = 15, and My = 50 — see Egqs. (21)-(22)]. As was shown in [10], such freedom in select-
ing the VCCs does not affect the physically significant results: The total energy of the
atom, the matrix density, and so on, remain unchanged in the quantum-chemical calculation,
as they should.

The VCC matrices lagq!! and nbdd-n that were obtained in {10] for various (nonmultiple)
terms in the aN configuration, on the basis of their characteristics, are divided into two
groups in accordance with the known division of terms into "Roothaan" and 'non-Roothaan"
terms [12-14]. 1In the case of non-Roothaan terms, corresponding to cgé) # cda [10], at

least one of the above-indicated matrices is (must be) asymmetric: llagg'll # “add‘“T and/or
Ibgg'l # lbgqt)T, in spite of the great arbitrariness in selecting the VCCs (My — Mg = 35).

At the same time, for terms of the Roothaan type, which in the dN configuration corre-

spond to ng) = cgs) {10}, from Egs. (28)-(29) [with numerical values of the parameters Mg,

"Mg,... obtained from Eqs. (21)-(22)], there are no consequent limitations on the form of the
matrices llagq'll and Ibggth. In particular, the corresponding VCCs can be assigned in the
standard Roothaan form [11]: agq+ = a and bgqr = b, where a = [—7cdd + N(N — 1)1/100£3 and
b = ~7¢{2)/10£{?) (see [101).

3. A similar analysis of Eqs. (28)-(29) for the pN configuration shows that the exist-
ing arbitrariness in selecting the VCCs app' and bpp', [My — My = 12, see Egs. (23)-(24)]
similarly does not affect the results obtained in the calculation of physical characteristics.
In the subsequent development,. we will use the values of these VCCs that were obtained by
Roothaan [11].
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4. A completely different situation is found in the case of the VCCs adp, bdp, apd, and
bpd. The general solution of Eqs. (28)-(29) for this case contains My — My = 32 arbitrary
parameters; and when these parameters are changed, it is possible to obtain different sets of
the sought VCCs.

Using these VCCs, we carried out ab initio calculations of the titanium atom and vanadium
ions, which have the electronic configurations 3d'4p' and 3p°3d3, 3p“3d3, respectively. The
details of the calculation scheme and a list of the states calculated will be given subse-
quently.

In these calculations, we found that the results from the calculation of such character-
istics as the energy of the atom, the coefficients in the expansion of AOs in a basis set of
Gaussian functions, and the one-electron energies ¢p, €4, and so on, are dependent on the
selection of the arbitrary parameters with an accuracy within that of the determination of
the VCCs adp, bdp, apd, and bpd - Let us remember that the VCCs (agq') and (app!,
bpp') were taken unchanged from [10, 11], respectively.

Here it is important to note that the symmetric characteristics of electron distribution
that are obtained from the calculation, characteristics such as the regular degeneracy of the
p- and d-shells (14)-(15), and also the relationships (20) and (17) between the integrals of
interelectron interaction, were obtained correctly in all cases and were independent of the
selection of arbitrary parameters.

5. An analysis of the results that have been set forth has led to the conclusion that
the system of equations {(13), (18), (19)} for determining the VCCs ap, and by, in an atom
with the pNPde configuration is necessary but not sufficient, and certain supplementary
equations are required.

SUPPLEMENTARY EQUATION FOR DETERMINATION OF COEFFICIENTS adp» bgps apds bpd

In view of the above discussion, a supplementary equation is required only for the cal-
culation of VCCs appearing in the off-diagonal blocks of the matrices (12). The sought equa-
tion has the following form:

Ezopd:zzodm (30)
» d p d

where matrice elements Qpq and Q4p generally speaking do not equal each other.

The validity of Eq. (30) is justified in [19] (see the next article in the present issue
of the journal) by an examination of the results of a quantum-chemical calculation by the UCO
method using the values obtained for the VCCs ap, and bpy, in comparison with analogous data
obtained within the framework of the Roothaan —Hartree~Fock atomic theory [2]. However,
there has not yet been any rigorous theoretical justification of this formula, and it can be
regarded only as a certain postulate (see also the following discussion).

By the method described above, Eq. (30) is transformed to a system of four homogeneous
equations. Thus, for the determination of 60 unknown VCCs adp, bdp, apd., and bpd, we finally
have 28 inhomogeneous and 28 homogeneous linear equations {(25)-(27), (30)}; therefore, in
finding the VCCs we can use 28 supplementary, arbitrary relationships.

The basic difference from the situation described in the preceding section of this
article is that the energy of the atom and other physical characteristics calculated with an
accounting for Eq. (30) do not depend on the selection of the 28 arbitrary parameters, as
should be the case. In all instances, the newly obtained values for the energies of atoms
and ions with the pNPde configuration (see Table 4) proved to be lower than the corresponding
values obtained in the preceding section of this article.

In order to represent the values obtained for the VCCs adp and apd in a form that is
suitable for practical application, we have used "natural" supplementary relationships among
them

Qox = Gays  Gax = dzzy Aa'y = Aa'zy Q8 = Aoy, Aerx = Aoy, (31)

Ayn = Qxp = A’y Oy’ = Qy§ == Qu',  Qpx = Q=qfy, Q28 == U328’ (32)

and analogous relationships for the coefficients bdp and bpd (bgx = bgys..-3bzs = bzst).
These relationships follow naturally from Egs. (25)-(27) and (30): The unknowns (agx, agy)

and (anx, arz) appear in Egs. (25)-(27) and (30) with equal coefficients; therefore, the sup-
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plementary relationships (31) and (32) do not change the number of linearly independent equa-
tions (a total of 32 equations), but they do reduce the number of unknowns from 60 to 38 .

Of these 38 VCCs, only 4 are physically independent, corresponding to the number of in-
dependent coefficients in Eq. (25). (See the discussion of this question in [10].) As inde-
pendent VCCs we selected

Gox = (46 — 35c®)/240f,f4,

or = (46 -+ T0c)/240f 74,
bax = (27 X 1569 — & X 245¢(9)/900f of 4, (34)
be, = (—36 X 15¢M 4+ 2 X 245¢3)/900f 14,

(33)

vhere c{¢) = c(g) = Np x Ng, c(2) = cgé),.... The other coefficients of the type of agp and

p
apd satisfying Eqs. (25)-(27) and (30) are expressed in terms of independent coefficients
(33)

Qax = Qgty == dgx == Ay/x = (aéx -+ 2002)/31

| Oay = Qs = a5 = Q4r; = (d80x — 06)/3, (35)
) ) axc‘=>(5an’y - 3A1)/21 ‘ -
o Qxx = (Sde + A_.Q/G,’
: a'c'r’ = 4y, o
@yg = 1005y — 94, '
@ys = —5a3, - 64,, (36)
POy =:A27
G:g = —3aq; + 64,

L Gyp = Sagx— 44,

L ay =4,

where A,, A,, and A, are certain arbitrary numbers. Analogous expressions for the coeffi-

cients bdp amd bpd are obtained from Egqs. (35) and (36) by simultaneous replacement of all

coefficients ajix by corresponding.coefficients bjx (by replacing apy by bgx, ag'y by bn'y:

" and so on), and also by replacement of the arbitrary parameters A,, A,, and A; by analogous
arbitrary quantities B,, B,, and Bj;.

VECTOR COUPLING COEFFICIENTS FOR s'dN CONFIGURATION

The approach that we have set forth in the foregoing material can also be used to de-
termine VCCs in transition-metal atoms {or ions) with the sldN-configuration sd (1< N 9.
The sought coefficients agg, bgg, asd, and bgd are determined from the equations

fifa §_ (Qsa + Qa) = cWFY + RFR, (37)
Ods =Q¢_1~ (Sd=£(_ie d<§), ] (38)
20«: = .E_‘}st, (39)

vhich are analogous to Egs. (25), (27), and (30), respectively. [The coefficients agg and
bgg from the corresponding diagonal block of the matrix (12) are equal to zero: agg = bgg =
0.] Purther considering that Jgq = F34q and Kgq = (1/5)F%4 [15] and omitting the intermediate
elementary computations, we obtained the following solution of Egqs. (37)-(39)

Qgs = Qg5 = Qs = A§s = Qy's == @, (40)
bgs = by = bars = bgs = byrs = b,

a=>5a, 2 byg=>5b, (41)
d d

vhere a = c{3)/20f5f4 = 1; b = —{3)/44. _ o
Thus, in the stalN configuration, coefficients of the type of agg and bgg (d=0, n, 7',

§, §8') are determined uniquely for each term by (40); and the coefficients agq and bgg are

determined with an accuracy within certain arbitrary relationships [there are only 2 equations

of (41) for the determination of 10 coefficients]. In particular, we can set ajg = a and

bgg = b. ‘
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TABLE 1. Coefficients cég) in Expression for Energy
Epds See Egs. (6) and (25)

Configuation, |y | e | ok | ok
phds, 3G 15 1/35 —18/15 —189/245

3 15 ~3/35 —18/15 ~—144/245

1 13 —3/35 —18/15 —84/245

piad, 8¢ 12 —1/35 ~18/45 —189/245

sF 12 3/35 —18/15 —189/245

4 12 3/35 —18/15 —129/245

K 12 —6/35 —-18/15 —69/245

plat, 3F i 2/35 ~—6/15 —3/245

TABLE 2. General Form of Matrices {apdl and Ibpdi
Satisfying Eqs. (25)-(27) and (30) and Supplemen-
tary Relationships (31)-(32),% for Nonmultiple
Terms in Configuration pNpdNd

x v z
Wt
Matrix llapgli
a (Baq, — 34,)/2 104, — 94, ~3a,, + 64,
% (Bay, + A,)/6 —5ag, - 64, Sag, — 44,
n A1 A’ . 5acx —_ !iA,
3 (Bag, - A,)/6 Aq Ag
& (5ag, -+ 4,)/6 A** Ay
Matrix (bt
¢ (3byy — 381)2 10ppy — 9B, —5by, -+ 6B
x (3bg, + B1)i6 —3bgy - 6By Sbgy — 4Bs
Py , By B, 5bye — 4B,
) (3b,, — B,)/6 By By
& , (3bgy — B1)6 By** B,

*See footnotes to Table 3.
*%A., Ay, A;, and B;, B,, B3, are arbitrary numbers.

TABLE 3. General Form of Matrices ladp! and Ibdpl Sat-
isfying Egs. (25)-(27) and (30), and Supplementary Re-
lationships (31)-(32),* for Nonmultiple Terms in Con-
figuration pNpdNd

c B a’ & K4
Matrix lag,ht
z - a. 8y @ aq
¥ agx*"* Ty 2ox Aax 2ax
2 ag: Ay Ay ay . oy
Matvix Elbd,,llt
z box bax bay boe b1
¥ box** 'y bax boax -
z o1 ' box b xy b y

*Transposes lladpit, ibdptt, ﬂapdut, and Ibpdit are given
in Tables 2 and 3. [The determination of the correspond-
ing original matrices lapdl, Ibdpl,... is given in Eq.
(12).] Let us emphasize that ladpl® = Bapdl, Ibgplt =
ibpdll, etc; see Table 2.

*%The coefficients agy, agz, anx, ary and the analogous
coefficients of the b-type are determined in Eqs. (33)-
(35). :
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TABLE 4. Hartree—Fock Energies of Atoms and Ions of
Vanadium and Titanium®

Atom | Configuration, Prigin of term (Lg, )
(or ion| term Ed' I—p’ SP) Total energy, au
v 3d3, *F — —042,837196
H . — —942 749087
Al 3p%3d*, 3G . 4F(d%); *P(p%) —941,072849
3 *H(d% =’-P(p§) —940.971360
I 241(d%); 2P(p®) ~940,900879
V2+ 3pt3ds, 5G SF(d%): 3P(pi) —038,748763
SF AF(d%): PP(pY) —038,702954
o 2H(d%); SP(pY) —938,531404
K SH(d%): D(p%) —938,450883
Ti 342, 3F — . © —848,367900
3dvpt, 3F ) :D(dY); 2P(pY) —845,342161

*Exactly the same HF basis set was used in calculating
the vanadium atom and 'ions; see basis set (14s9p5d)/
[8s4p2d] with contraction scheme 3 for vanadium atom
in [21]).  Exactly the same HF basis set was used in
calculating the ground and excited states of the ti-
tanium atom; see the basis set for the titanium atom

RESULTS AND DISCUSSION

Using Egs. (31)-(36), we calculated the VCCs adp, bdp, apd, and bpd for a number of
atomic states in the configurations pgd®, p“d®, and p'’d'; a list of these states is given in
Table 1, along with the coefficients ¢(%), c(}),... that are needed for the calculation.

In Tables 2. and 3 we show the general form of the VCC matrices lapdl, lbdpl, lapdl, and
Ibpdl satisfying Eqs. (25)-(27) and (30), and also the supplementary relationships (31)-(32)
for nonmultiple terms, in the pNPde configuration.

In Table 4 we present results from ab initio caleulations of atoms and ions of titanium
. and vanadium, calculations performed using the VCCs obtained in this work. In the calcula-

tions we wused the MONSTERGAUSS-81 program [20]; details of the calculation scheme have been

reported previously [10]. (See also the footnotes to Table 4.) ‘

- A comparison of the results presented in Table 4 with analogous data [19] obtained
within the framework of the Roothaan—Hartree—Fock atomic theory "expansion method") [2]
demonstrates that the results are completely identical, as they should be.

Such agreement is obviously not accidental and hence can be regarded as proof of the
validity of Eq. (30). With this in view, let us examine the line of reasoning we used in
deriving this equation. We should emphasize that the line of reasoning does not pretend to
any mathematical rigor, but servVes only as an indication of the origin of the equation.

Earlier in this article, it was stated that the one-electron energies ep and €4, as well
as the total energy of the system, depend on the selection of the arbitrary parameters. In
the light of the analysis that we performed, it appeared natural to impose an additional con-
dition on the VCCs in such a manner that the one-electron energies ep and e€d would be inde-
pendent of the selection of the arbitrary parameters. Using Eq. (17§, we can represent €p
and €4 as follows:

ep = fpllp < gy(closed) + &,(p’) + €,(d), .
— H ! 1 ! d/ : (AZ)
eg = faHaq + eqlclosed) + e,(d') + e4(p).
When Egqs. (25)-(27) are taken into account, it can be shown that the requirement that ep and
£4 be independent of the selection of the arbitrary parameters can be reduced to the condition

Zepd)= Zealp), (30a)
P
from which Eq. (30) follows directly.*

*After this article was ready for press, the authors were able to obtain an analytical proof
of Eq. (30a); this will be published subsequently {22]. From the proof it follows that equa-
tions of the type of (30a) have an extremely general character and that they follow from the
variational principle.
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In conclusion, we wish to express our appreciation to A. I. Dement'ev, who drew our at-
tention to this problem, and to I. V. Abarenkov for valuable discussion of the work.
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