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An analysis is made of the necessary conditions that must be satisfied by vector 
coupling coefficients (VCCs) amn and bmn characterizing individual L,S-multiplets 
in atomic conf igurations pMdN and sldN (1 <;;;; :Y ~ 9. 1 " M "5). It is shown that in the 
systems with two open shel1s, the sought VCCs satisfy not only the known limita­
tions that fol10w from spherica1 symmetry, but also a certain supp1ementary equa­
tion that is introduced in the present work in the form of a postulate. These VCCs 
obtained inthe present work have been used in ab initio calculations, by the single 
coupling operator method, of atoms and ions of titanium and vanadium with configur­
ations 3d14pl, 3p 4 3d 3 , and 3p 53d 3 • 

INTRODUCTION 

The inner electronic levels in molecules that are detected upon ionization are known to 
be very nearly purely atomic levels [1]; therefore, in quantum-chemical interpretation of the 
corresponding experimental data (x-ray, photoelectron, Auger, and other spectra), both the 
moleeule in question and the corresponding isolated atom (or their ions) are commonly calcu­
lated. In the Hartree-Fock (HF) method, the atomic states are calcu1ated by the use of a 
specia1ly written atomic program [2, 3], since in the general Hartree-Fock theory of open 
shells - the unified coup1ing operator (UCO) method [4-8] - the problem of calculating ion­
ized atoms is not completely solved. In particular, difficulty is recognized in using the 
ueo method to calculate ions in states with two degenerate open shells [9, 10]. 

In this article we ar§ p§esenting a solution of this problem for atoms (or ions) with 
electronic conf iguration p Pd d (1 ~N p ~ 5, 1 ~ X d ~ 9). The calculation of such states is 
of interest (for example) in interpreting Auger spectra of transition-metal compounds [lJ. 

The main interest in this problem, however, is in its theoretica1 aspect. As is known, 
when calculating systems with degenerate open shells using the single-configuration (Hartree­
Fock) approach, special measures are required for matching of the syrnmetry of (a) the nuclear 
core and one-e1ectron orbitals and (b) the nuclear core and many-electron fucntions of state. 

Problem a was solved in general form by Roothaan [11], who proposed that the mean energy 
of the term should be used as the energy functiona1 in the Hartree-Fock method. 

The second problem b arises in systems with a certain symmetry - in cubic, tetragonal, 
and icosahedra1 point groups - and also in atoms with open d-shells in certain ("non-Roothaan" 
[12]) spectroscopic states of the atoms. Asolution of this problem was given in [10, 12-14] 
for systems with a single degenerate open she1l (electronic configuration yN). For more com­
plicated systems tha~ h~ve two or more degenerate open shells, such as transition-metal ions 
with configuration p Pd d, solution of this problem, as suggested in [9], is impossible in 
principle. 

The salient feature of the solution found in the present work is that. in determining 
vector coupling coefficients amn and bmn that are sought in the ueo method, a new equation 
is introduced in the form of a postulate (this is in addition to the equations proposed pre­
viously in [10J). The validity of the postulated equation has been justified by comparing 
the results of a calculation with data obtained within the framework of the atomic theory [2]. 
However, we have not been successful in clarifying the physical condition expressed by this 
equation. 
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POSSIBLE STATES AND ENERGY OF ATOM (OR ION) WITH pNPdNd CONFIGURATION 

The possible states of existenee of an atom with eleetronic configuration pNddNd (1 ~ 
N p ~ 5. 1 ~ N d ~ 9) are determined by general rules [15], starting with the corresponding 
states in configurations pNp and dNd. If Lp and Sp are the values of the orbital and spin 
moments for a system with the electronic configuration pNp, and Ld and Sd are the analogous 
values for theconfiguration dNd, then the possible va lues of the total moments Land S for 
an atom with the electronic eonfiguration pNpdNd will be given by the following (here and 
subsequently, we are assuming a Russell-Saunders L,S-bond [15]): 

L = L p + Ld, L p + Ld - 1, ... , IL p - Ldl; 

S = Sp + Sd. Sp + Sd -1 •...• ISp - Sdl. 
(l) 

Configurations of the pNpdNd type give rise to a large number of terms (L,S-multiplets), many 
of which are multiple. For example, in the p4 d3 configuration that is examined in the fol­
lowing material, the following states are possible: 

p4d3 --r 6G,6F, BD(2). 6P. 6S. 

41, 'H(3). 'G(5). 4F(8). 'D(8). 'P(7). 'S(2), 
2K,21(3), W(6). 2G(10) , 2F(12) , 2D(13); 2P(9). 2S(4), 

wher~ the ,numbers in theparenthese$' denote the number of tepns with the given symmetry. 
The saI!leas in ,the simpler ease ofatom~ with dN ,configuration, a:.fprmallyeorrect caleula­
tion of multiple terms (fromthe standpointof the variational principle) requires going be-' 
yondthe framework of theHartt'ee - Fock method (15).' ' 

The energy elf the term (L, S, pNpdNd) can be represented as a,sUm of cO)llponents from 
individual shells 

(2) 

where Epp is the energy of intereleetron interaction within the open p-shell; Edd is the, 
analogous energy for the d-shell; Epd is the energy of interaction of open p- and d-shells; 
E' is the remainder of the energy of the term, which is identical for all states'of the eon-
figuration pNpdNd . ' 

• If the particubr L.S-multiplet in configuration pNPdNd is singular (not' 'multiple), it 
is not difficult to show that 

Epp=,Epp(L, S, pNpdNd) = Epp(Lp• Sp. pNp ). 

Edd = Edd(L, S, pNPd""'d) = EdiLd• Sd, dl'ld). 

(3) 

Le., for nonmultip1e terms, the values of Lp , Sp. Ld. and Sd are still "good" quantum numbers. 
[In other words, if two different nonmultiple L,S-multiplets,correspond to exactly the same 
set {Lp, Sp, Ld, Sd}, then the energies (2) of these multiplets will differ only in the term 
Epd'] Only such states will be considered in the following discussion. 

In the theory of atomic multiplets [15], the individual terms in Eq. (2) are expressed 
through Slater - Condon parameters 

E pp = c~oJF~p + c~2JF~p, ( 4) 

E (O)FO . (2)F 2 wF4 
dd = Cdd dd + Cdd dd + Cdd dd. (5) 

E pd = C~oJ~d + c~2JF~d + C~JG~d -+- C~3JG~d' (6) 

where numerical va lues of the coeffieients c(o), C(l) ••.. , eharacterizing the L.S-multiplet 
and configuration that are being caleulated. have been given in Slater's monograph [15, Vol. 
111; but the term EI, which includes the kinetic energyof the electrons. the energy of their 
interaction with the core. etc. [see below, Eq. (8)], is not detailed in the theory of [15]. 

EQUATIONS FOR DETERMINATION OF VECTOR COUPLING COEFFICIENTS 

In the unified coupling operator (UCO) method [4-8, 16], the energy of an atom 
electronic configuration pNpdNd in astate described by quantum numbers Land S has 

E (L, S. pNpdNd ) = E' + ~ ~fmf" (2am,.Jmn - bmnKmll), 

m " 

with 
the form 

(7) 

where the summation covers all p- and d-orbitals of the open shell: {m} ;", {n} = {p} ED {d}; and 
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(8) 

The subscripts k and ~ number the orbitals of the closed shell; f m is the occupation number 
of the open shell, which in the present problem assumes one of two possible values: f p = 
Np/2np = Np/6 or fd = Nd/2nd = Nd/lO. 

The coefficients amn and bmn , which are termed vector coupling coefficients (VCCs), in 
the UCO method assign the electronic configuration and state of the system [B, 16]. In 
transition-metal atoms and ions, which have an unfilled d-shell, these coefficients, gen­
erally speaking, are not constants but rather depend on the specific selection of the basis 
set of degenerate orbits of the open shell [10]. In the subsequent analysis it will be as­
sumed that the basis set of p- and d-orbitals has been assigned (fixed) as follows: 

(J = dzt , n = d",z, :1;' = dyz, Ö = dX1_y!, Ö' = d:cy, 

x = Px, Y = Py, z = pz-
(9) 

In the interest of simplifying the subsequent formulas, we will introduce the notation 

Qmn = 2amnJ mn - bmnKmn-· (10) 

Then, 

E (L, S, pNpdNd ) = E' + "2. 'B tmfllQmn- (11) 
m n 

Thus, for the calculation of atoms and ions with the pNpdNd configuration, it is necessary to 
determine a set of coefficients amn and bmn of Eq. (7) for each state. Considering the di­
mensionality of the p- and d-shells (np = 3 and nd = 5), in calculating an ion with electronic 
configuration pNpdNd it is necessary to determine 2 x (np + nd) 2 = 128 unknown coefficients amn 
and bmn , forming a matrix of the type 

I I app' 
~ amn I1 = --1---- (12) 

where p, pi = X, y, Z; d, d l = a, n, n l ,. 5, 51. 

A general approach to the problem of finding the coefficients amn and bmn for atoms with 
an open d-shell was proposed in [10]. With certain extensions, the results of [10] can also 
be used in the case under consideration, with two open shells. 

The first equation for determining the sought VCCs amn and bmn , an equation that follows 
from [10], expresses physically the condition that the energy of the L,S~multiplet must be 
identical in the two different vers ions of Hartree-Fock theorem, i.e., in the atomic theory 
of [15J and in the SCC method [4~8]. Omitting the term EI in Eqs. (2) and (11), we have 

~~fmfnQmn=t~Ll; Qpp'+fäl;l;Qcici,+/pfd~~(QPd+Qcip) =Epp+Edd+Epd, (13) 
m n p p' d ci' P d 

where Epp , Edd' and Epd are determined in Eqs. (4)-(6). After substituting Eqs. (10) and 
(4)-(6) into Eq. (13), the resulting equation establishes the relationship between the un­
known VCCs amn and kmn and the known coefficients c(o), C(l), .••• 

The second equation for the determination of VCCs that was proposed in [10J expresses 
the condition of degeneracy of an open shell. In the pNpdNd configuration there are two 
degenerate open shells, i.e., 

Gl' = er:: (p, l!.. = x, y, z), 

ed = e.!!; (d,!: = a, 11:, n', &, &'), 

(14) 

(15) 

where Ep and Ed are the one-electron energies. 

In the Hartree-Fock method for open shells, the one-electron energies are the eigen­
va lues of the single coupling operator R 
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Using a general expression for R that was obtained by Hirao, specifically Eq. (3.8) in [7], 
we have 

where Fm is the Fock operator for the orbital ~m [7. Eq. (2.1)]. After substituting (17) 
into (14) and (15) and performing the required transformations [10]. we obtain 

fp~ Q."p, + fd ~ Qpd = tp ~Qpp' -+- fd~Qpd 
p' d p' - d-

(cp = öl'; p, J!.' p' = X,' y, z), 

fp '2. Qdp + !d '2. Qdd' = fp '2. QdP + h ~ Qdd' 
P d' p - d'-

(Öd = ~; d,!J, d' = CJ, ,-c, ,-c', Ö, ö'), 

(17) 

(18) 

(19) 

where the notations in parentheses of the type (Ep = Ep and P. ·P. p' = X, y, z) point out the 
origin of the .equation - from the condi tion o.f degeneracy (14) - or (15). 

Thus. within the fram~work of the approach of [10) ,in calcuhlting the VCCs ~ and 
bmn in tQe pNpdNd configuration. we have three basic relationships: (13). (18), and (19); 
Equation (18) is broken up ioto two independent equations (EX = Ey and EX :: EZ ); and anal­
ogously, Eq. (19) is broken up into four equations. [The number of independent equations 
in Eqs. (18) and (19) is determined by the inequalitiesp < p and d < d. respectively. ]With -
an element-by-element writing (see below). each of theseseven equations, in turn. is b.roken 
up into several linear eq~ations. . 

.FACTORIZATION OF EQUATIONS {CU), (18). (l9)} 
, ", . ," , 

In .order to obtain from Eqs .. (13), (18), and (19), an equation in explicit formrelating 
the unknown VCCs amn and bmn to the known coefficients c(o), C(l) ••••• the. integrals Jmn and 
Kmn in Eq. (10) must 'beexpressed in terms of Slater-Condon parameters [15]. 

CorrespondingexRressions are given in the monograph ·(15)<\for the case of complex AOs and 
in the monögraph [17 r fqr:. real AOs (integrals of the 'typeof Jp'p I. Kpp. Jdd I, and Kdd l

., ,and, 
also four- index integrals. <d~1 d! ~'». Analogous expression~ih real AOs for integrals Jpd= 
<pp\dd>and Kpd = <pd\pd> were obtatned in [18] and are given below.(For simplification of 
the formulas, we have used the notation FO = Fpd' F2 = F~d"") 

? 
J",a = J ya = JYI- 35 F2, 

J -FO' 4 F2 z.a- '35 ' 

J",n = J1P, = J zn = J.:I' = J .,&.= J.,o, = J yÖ = JY61 = po + ;5 F\ 

Jx:r! = Jy:t = J zö = J:6' = FO - 3~ F2; 

K - K - 1 Gl . 18 G3 
xa - ur; - 15 ' 245 ' 

K _.i.. Gl 27 G3 
Z(J - 15 + 245 ' 

Kx:t = K?J~r! = Kz~ = KZ:I' = Kx~ = K",ö f = K y" = KYbf = 1
3
5 GI + 224~ G3, 

1-
Kx.~' = Ky ,; = K zo = K:ö' = 2:5 G3. 

(20) 

After substituting into Eq. (13) 
Qppl and Qdd' from [17], and equating 
in the left and righ sides, we obtain 
of 128 unknowns amn and bmn . 

the values of Qpd from Eqs. (10) and (20) and va lues of 
o 2 0 3 individually the coefficients of Fpp, Fpp , Fdd •... ,Gpd 

9 linear inhomogeneous equations for the determination 

An analogous substitution of values of Qmn into the two equations (18) and into the four 
equations (19) gives (respectively) 2 x 6 = 12 and 4 x 7 = 28 homogeneous linear equations. 
[In Eqs. (13), (18), and (19), after the indicated substitution, we find that there are (re­
spectively) 9, 6. and 7 Slater-Condon parameters.] Thus, in all we have 9 inhomogeneous and 
40 homogeneous linear equations for the determination of the 128 unknowns amn and bmn . 
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The system of equations thus obtained is broken up (factorized) into three groups of 
equations, each of which contains unknowns from only one block of the matrix (12): {app'j 
bpp ' }' {add; bdd'}' {adp' bdp; apd' bpd}' 

Eguations for Determination of Coefficients add ' and bdd' 

The set of equations containing the unknowns add' and bdd' includes three inhomogeneous 
equations obtained from Eq. (13). These three equations can be written in the form of a 
single equation that follows directly from (13), 

f 2 '" '" Q (OlF(Ol, (2)F2 . (~)F4 
• d kJ kJ dd' = Cdd dd T Cdd dd -;- Cdd dd. 

d d' 
(21) 

After substituting the Slater-Condon ~arameters into the formula for Qdd' (10) and 
equating individually the coefficients of Fdd' FJd. and Fdd in the left and right sides of 
Eq. (21), we obtain three inhom?geneous·linear equations relating the unknowns add' and bdd' 
to the known quantities c~d)' cdd)' and c~d)' 

The correponding homogeneous equations for the determination of add ' and bdd' are ob­
tained from the condition of degeneracy of an open d-shell (19). The 28 equations obtained 
above from Eq. (19) can be written in the form of two general equations, one of which contains 
the unknowns add' and bdd' (and does not contain any other unknowns) 

(22) 

where the notations in the parentheses indicate, the same as previously, the origin of this 
equation - see Eqs. (18) and (19). The second equation obtained from (19). containing the 
unknowns {adp. bdpL is given below - see Eq. (27). 

Transferring all terms in Eq. (22) to the left side and performing the transformations 
described above, we obtain 3 x (nd - 1) = 12 homogeneous linear equations. Thus, when we 
take (21) into account. we obtain a total of 3 x nd = 15 equations for the determination of 
2 x nd x nd = 50 unknowns add' and bdd" 

Through a direct comparison, we are convinced that the equations (21) and (22) that we 
have obtained do coincide exactly with Eqs. (9) and (16) from [10), which were obtained from 
the vector coupling coefficients (VCCs) in an atom with the dN configuration. This result 
means that the VCCs add' and bdd' that are calculated for the multiplet (Ld' Sd' dN) remain 
the same for all nonmultiple (not double) multiplets (L, S, pNpdNd) if Nd = N. and the quan­
tum numbers L, S, Ld and Sd are related to the equations (1). 

It can be shown analogously that the coefficients appl and bpp' can also be taken as 
identical for the multiplets (Lp, Sp, pNp) and (L, S, pNpdNd ). The corresponding equations 
obtained fram Eqs. (13) and (18) are given below without any detailed commentary. 

Equations for Determination of Coefficients app' and bpp' 

f~ '" '" Q (O)F O + (2lF2 
p kJ kJ pp' = cpp pp cpp pp, 

P 1" 

After substituting the Slater-Condon parameters into the formula for Qppl (10) and 
equating individual1y the coefficients of F~p and Fpp in the left and right sides of both 
equations, we obtain 6 equations for the determination of 18 unknowns app l and bpp" 

Equations for Determination of Coefficients adp, bdp. apd. and bpd 

(23) 

(24) 

Subtracting Eqs. (21) and (23) from Eq. (13), we obtain an inhomogeneous equation for 
the determination of the VCCs adp, bdp. apd, and bpd that appear in the off-diagonal blocks 
of the matrix (12): 

f f '" '" (Q . Q) eOlFo. (2)F2 . (I)G1 . (3)G 3 
P d kJ kJ pd -;- dp = epd pd -;- Cpd Pd -;- epd pd .. Cpd pd. 

p d. 

An analogous procedure of subtracting Eqs. (24) and (22) from Eqs. (18) and (19), respec­
tive1y, leads to two homogeneaus equations 

(25) 

~Qpd=~QPd (8p = 81:' p<eJ. (26) 
d d-
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(27) 

The relationships that have been obtained, Eqs. (25)-(27), permit further simplification. By 
applying to Eq. (25) the above-described transformations [see Eq. (21) and subsequent text], 
we obtain a system of inhomogeneous linear equations in the form ' 

."1x 

""' A (i-1l!1 1 . . .::.. ijXj = cpCi P Ci, t = 1, 2, ... , Mscp , 
)=1 

(28) 

where Xj are the unknowns adp, apd, bdp, and bpd, ordered in a certain manner; Mx is the 
number of unknowns; Aij are numerical coefficients; Mscp is the number of Slater-Condon 
parameters (SCPs) in Eq. (25). (In the present case, Mx = 2 x 2 x np x nd = 60, and MSCp = 
4. ) 

Analogous transformations in Eqs. (26) and (27) lead to the set of homogeneous equations 
(29) 

, 'Mx 

1: AijXj = 0, i = Msc~ -;-1, • Mscp + 2, . .. ,111;,,' ' 
j=1 (29) 

where Mt i5 the total numbet· of linear equations (28)'"(29), Mt = MSCp x {1 + (np - 1) + 
(nd .... I)} = 28. [The numbers of homogeneous equations obtainedindividually from Eqs. (26) 
and (27) are MSCp x (np - 1) and MSCp x (nd - 1), respectively.] 

Thus, for the determination of 60 ullknown VCGs.adp, bdp, apd, and bpd', we have 4 in:­
homogeneous and 24 homogeneous linear equations; Le.,there is a. certain arbitrariness in 
the selection ofthese VCCs. As will be shöwn suqsequently, this, circiunstance .is very im­
portant; arid herice wewill examine in more detail 'this system of equatiqns and its solutions 
for various configU1:ations. 

1. The system of homogeneous equations (29) does not contain thecoefficients c( 0) , 
c(2), ... , characterizing the state of the system an the electronic configuration; and it 
is identical for all atoms (or ions) with the configuration pNpdNd with all possible Np, and 
Nd~, In view of the r<l.tionality cf the coefficients Aij [which fhllows from the rationality 
of the coefficients and the·equations (20)], this system can be solved in integers, thus 
avo1.ding rounding-off errors in 'computerized'calcul<l.tions'. 'tn the present work, we are 
using a special procedure given in [10] for theanalytical solution of the system of homo­
geneous equations (29) with integral rectangular matrices Aij' 

2. Equations of the type of (28)-(29) for finding VCCs were examined for the first 
time in [10] in application to atoms with the dN configuration, for which a problem also 
arises in the arbitrariness in selecting the VCCs add' and bdd' [in the latter case, MSCp = 
3, Mt = 15, and Mx = 50 - see Eqs. (21)-(22)]. As was shown in [10], such freedom in select­
ing the VCCs does not affect the physically significant results: The tot,al energy of the 
atom, the matrix density, and so on, remain unchanged in the quantum-chemical calculation, 
as they should. 

The VCC matrices lIadd'lI and IIbdd' 11 that were obtained in [10] for various (noninultiple) 
terms in the dN configuration, on the basis of their eharacteristies, are divided into two 
groups in aeeordance with the known division of terms into "Roothaan" and "non-Roothaan" 
terms (12-14]. In the case of non-Roothaan terms, corresponding to c~d) ~ cid) [10), at 

least one of the above-indieated matrices is (must be) asymmetrie: lIadd'lI ~ lIadd'\IT and/or 
IIbdd' 11 ~ IIbdd'IIT, in spite of the great arbitrariness in seleeting the VCCs (Mx - Mt = 35). 

At the same time, for terms of the Roothaan type, which in the dN configuration corre­
spond to c~d) = c~d) [10), from Eqs. (28)-(29) [with numerical va lues of the parameters Mx, 
Mt, ... obtained from Eqs. (21)-(22)], there are no eonsequent limitations on the form of the 
matrices lIadd'lI and IIbdd' 11. In particular, the corresponding VCCs can be assigned in the 
standard Roothaan form [11]: add' = a and bdd' = b, where a = [-7c~d) + N(N - 1»)/100fa and 
b = -7e~d)/10f~2) (see [10]). 

3. A similar analysis of Eqs. (28)-(29) for the pN eonfiguration shows that the exist­
ing arbitrariness in selecting the VCCs app' and bpp ', [Mx - Mt = 12, see Eqs. (23)-(24)] 
similarlydoes not affect the results obtained in the calculation of physical characteristics. 
In the subsequent development"we will use the values of these VCCs that were obtained by 
Roothaan (11]. 
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4. A completely different situation is found in the case of the VCCs adp, bdp, apd. and 
bpd. The general solution of Eqs. (28)-(29) for this case contains Mx - Mt = 32 arbitrary 
parameters; and when these parameters are changed, it is possible to obtain different sets of 
the sought VCCs. 

Using these VCCs, we carried out ab initio calculations of the titanium atom and vanadium 
ions, which have the electronic configurations 3d 14p l and 3p 5 3d 3 , 3p 4 3d 3 , respectively. The 
details of the calculation scheme and a list of the states calculated will be given subse­
quently. 

In these calculations, we found that the results from the calculation of such character­
istics as the energy of the atom, the coefficients in the expansion of AOs in a basis set of 
Gaussian functions, and the one-electron energies ~p, ~d' and so on, are dependent on the 
selection of the arbitrary parameters with an accuracy within that of the determination of 
the VCCs adp, bdp, apd. and bpd' Let us remember that the VCCs (add') and (app " 
bpp ') were taken unchanged from [10, 11), respectively. 

Here it is important to note that the symmetrie characteristics of electron distribution 
that are obtained from the calculation, characteristics such as the regular degeneracy of the 
p- and d-shells (14)-(15), and also the relationships (20) and (17) between the integrals of 
interelectron interaction, were obtained correctly in all cases and were independent of the 
selection of arbitrary parameters. 

5. An analysis of the results that have been set forth has led to the conclusion that 
the system of equations {(13), (18), (19)} for determining the VCCs amn and bmn in an atom 
with the pNpdNd configuration is necessary but not sufficient, and certain supplementary 
equations are required., 

SUPPLEMENTARY EQUATION FOR DETERMINATION OF COEFFICIENTS adp' bdp' apd, bpd 

In view of the above discussion, a supplementary equation is required only for the cal­
culation of VCCs appearing in the off-diagonal blocks of the matrices (12). The sought equa­
tion has the following form: 

(30) 

where matrice elements Qpd and Qdp generally speaking do not equal each other. 
The validity of Eq. (30) is justified in [19] (see the next article in the present issue 

of the journal) by an examination of the results of a quantum-chemical calculation by the ueo 
method using the values obtained for the VCCs amn and bmn , in comparison with analogous data 
obtained within the framework of the Roothaan-Hartree-Fock atomic theory [2}. However, 
there has not yet been any rigorous theoretical justification of this formula, and it can be 
regarded only as a certain postulate (see also the following discussion). 

By the method described above, Eq. (30) is transformed to a system of four homogeneous 
equations. Thus, for the determination of 60 unknown VCCs adp, bdp, apd, and bpd, we finally 
have 28 inhomogeneous and 28 homogeneous linear equations {(25) - (27), (30)}; therefore, in 
finding the vecs we can use 28 supplementary, arbitrary relationships. 

The basic difference from the situation described in the preceding section of this 
article is that the energy of the atom and other physical characteristics calculated with an 
accounting for Eq. (30) do not depend on the selection of the 28 arbitrary parameters, as 
should be the ease. In all instances, the newly obtained values for the energies of atoms 
and ions with the pNpdNd configuration (see Table 4) proved to be lower than the corresponding 
values obtained in the preceding section of this article. 

In order to represent the values obtained for the VCCs adp and apd in a form that is 
suitable for practical application, we have used "natural" supplementary relationships among 
them 

and analogous relationships for the coefficients bdp and bpd (bex = bey;·· .;bzo = bzo ')' 
These relationships follow naturally from Eqs. (25)-(27) and (30): The unknowns (aex ' aay) 
and (anx, arrz) appear in Eqs. (25)-(27) and (30) with equal coefficients; therefore, the sup-
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plementary relationships (31) and (32) do not change the number of linearly independent equa­
tions (a total of 32 equations). but they do reduce the number of unknowns from 60 to 38 . 

Of these 38 VCCs. only 4 are physically independent, corresponding to the numberof in­
dependent coefficients in Eq. (25). (See the discussion of this question in [10].) As inde­
pendent VCCs we selected 

aaz = (4c(O) + 70C(2»/240f pfd. 

bax = (27 X 1Sc(!) - 4 X 245c(S»/900f pf d. 

ba• = (-36 X 1Sc(l) + 2 X 245c(3»i900f pf d. 

(33) 

(34) 

where c(o) = c~~) = Np x Nd, C(2) = c~a), ..•. The other coefficients of the type of adp and 

apd satisfying Eqs. (25)-(27) and (30) are expressed in terms of independent coefficients 
(33) 

an:>: = a,,'y = aö:J: = aö,x = (aax + 2aaz)/3, 

a,;,y = a:t'x == allz = at,r. = (4aax - aaz)/3, 

. a"(J = (5a~y-:- 3AIY/~' 

ax:t = (5aa! + A1)/ß, 

ax,,' = Al' 
aya = tOa:tx - 9A 2.:. 

ay:t = -5aJ. -:- 6A 2, 

ay,,' =·A2 , 

a,C! = -;-5a"y + 6A s, 

a!" = 5aC!x- 4A 3, 
azö = A s, 

(35) 

(36) 

where Al' A2 , and Aa are certain arbitrary numbers. Analogous express ions for the coeffi­
cients bdp amd bpd are obtained from Eqs. (35) and (36) by simultaneous replacement of all 
coefficients aik by corresponding.coeffici~nts bik ,(by replacing a rrx by bnx ' an'y by bn'y' 
and so on), and also byreplacement of the arbitrary parameters Al' A2 • and Aa byanalogous 
arbitrary quantities Bl • B2 , and Bs • 

VECTOR COUPLING COEFFICIENTS FOR sldN CONFIGURATION 

The approach that we have set forth in the foregoing material can also. be used to de­
termine VCCs in transition-metal atoms (or ions) with the sldN configuration sldN (1 ~ N ~ !l), 
The sought coefficients ads. bds' asd. and bsd are determined from the equations 

Qd; = Q~,: (IOd = E~, d < ~). 
1: Q.d = I; QdSl 

d d 

(37) 

(38) 

(39) 

which are analogous to Eqs. (25), (27), and (30), respectively. [The coefficients ass and 
bss from the corresponding diagonal block of the matrix (12) are equal to zero: ass = bss = 
0.] Further considering that Jsd = F~d and Ksd = (1/5)F~d [15] and omitting the intermediate 
elementary computations, we obtained the following solution of Eqs. (37)-(39) 

aa, = Q", = a,,'s = aö, = aö,. = a, 
br:;; = b:rs = b",s = bo• = böf, = b, 

);a'd = 5a, ~ b'd = 5b, 
d d 

where a = c~a)/20fsfd = 1; b = -c~d)/fd' 

(40) 

(41) 

Thus, in the sldN configuration, coefficients of the. type of ads and bds (d = 0, u, u', 
0, 8') are determined uniquely for each term by (40); and the coefficients asd and bsd 'are 
determined with an accuracy within certain arbitrary relationships [there are only 2 equations 
of (41) for the determination of 10 coefficients]. In particular, we can set ads = a and 
bsd = b. 
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TAßLE 1. Coefficients c~~) in Expression for Energy 
Epd; See Eqs. (6) and (25) 

Configuration. F~ F~ G~d G 3 

tel"lll pd 

p"d3, -G 15 1/35 -18/15 -189/245 
3[ 15 -:cl/35 -18/15 -144;245 
I[ 15 -3/35 -18/15 -841245 

p4d3, 6(; 12 -1/35 -18/15 -189/245 
6F 12 3/35 -18115 -189/245 
'[ 12 3/35 -18/15 -129/245 
=K 12 -6/35 -18115 -69/245 

pl d l ,3F 1 2/35 -6/15 -3/245 

TAßLE 2. General Form of Matrices lIapdll and IIbpdil 
Satisfying Eqs. (25)-(27) and (30) and Supplemen­
tary Relationships (31)-(32).* for Nonmultiple 
Terms in Configuration pNpdNd 

:>: V 

Matrix !lalld l: 
t 

11 (Sa:tY - 3A I )/2 10/1=,- 9A 2 -5a"y76A 3 

n (Saaz + A t )/6 -:Jaa: -:- 6A 2 5aa" - 4A 3 

n' Al Az 5aa" - 4A, 

Ö (SatZ. -:-- A 1)/6 A 2 A, 

ö' (5atZz + A 1)/6 A2
•• 

A, 

Matrix Iibpd!l t 

(J I (5b;tv - 381)/2 10btu: - 9B~ -5b"v 7 6B3 

!t (SbCt +- B1)i6 -5b"t + 6B2 5ba" - 4B3 

;j' I BI B~ 5b"" - 4B3 

Ö (Sb"z -:- B I )/6 B: 8, 

ö' I (5b"t +- B I )/6 Hz·· B3 

*See footnotes to Table 3. 
**A1 • A2 • A3 • and Bl • B2 • B3 • are arbitrary numbers. 

TABLE 3. General Form of Matrices 11 adp 11 and IIbdpU Sat­
isfying Eqs.(25)-(27) and (30). and Supplementary Re­
lationships (31)-(32).* for Nonmultiple Terms in Con­
figuration pNpdNd 

" :t' 6 6' 

:z: Q= Q= 

!I a:t,x a:tx 

a:ry Q:ty 

:z: b,,:>: b:ty b"" b;L'C 

y b"y b:t;>: b= b= 

b= b:t" b"'l1 ~:lY 

*Transposes lIadpllt, llbdpllt, ilapdll t , and Ilbpdll t are given 
in Tables 2 and 3. [The determination of the correspond­
ing original matrices Ilapdll. 11 bdp 11 , ••• 1s given in Eq. 
(12).] Let us emphasize that lIadpllt" lIapdll, IIbdpllt" 
UbpdU, etc; see Table 2. 
**The coefficients aoy, aoz, anx. any and the analogous 
coefficients of the b-type are determined in Eqs. (33)­
(35) . 
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TABLE 4. Hartree - Fock Energies of Atoms and Ions of 
Vanadium and Titanium~: 

At.)m I Configurdtian, 
(or ion) term 

~rigin of term (Ld' 
d' Lp. Sp) 

I Total energy, au 

V 3d3 , 'F -\142.837196 
~H -942,749087 

VT 3p~3d", 5G 4F(d3); 'P(p:') -941.072849 
3[ 2H(d3) 'P(p5) -940:971360 
l[ 2Jl(d"); 2P(pS) -940,900879 

V2 ... 3p'3d3 , 6G 4F(d3): 3P(p') -938.748763 
GF 4F(d3): ::P(p4) -938;702954 
41 2H(d"); "P(p') -938.531404 
'K 'H(d3); ID(p') -938,450883 

Ti 3d', 3F -81.8,367900 
3d14pl, 3F 2D(d1); 'P(pl) -845,342161 

*Exactly the same HF basis set was used in calculating 
the vanadium atom and 'ions;: see basis,set (l4s9p5d)j 
[8s4p2d] with contraction scheme 3 fot" vanadiiunatom 
in [21]. Exactly the same HF basis set was used in 
calculating the ground and excited states of the t:j..­
tanium atom; 'see the basis set for the titanium atom 
in ['21). 

RESULTS AND DISCUSSION 

Using Eqs. (31)-(36), we calculated the VCCs adp, bdp.apd, and bpd for a number of 
atomic states in the configurations PS d 3 , p4 d3 , and p1d1;a list of these states is given in 
Table 1, along with the coefficients ce 0), ce 1) , • •. that are needed for the calculation. 

In Tables 2 and 3 we show the general form 'of the VCC matrices \I apd n, \I bdp 11, 11 apd 11, and 
IIbpdll satisfying Eqs. (25)-(27) and (30), and also the supplementary reiationships (31)-(32) 
for nonmultiple terms, in the pNpdNd configuration. 

In Table 4 we present results from ab initio calculati,?ns of atoms and ions of titanium 
and vanadium, calculations performed using the VCCs obtained in this work. In the calcula­
tions weused the MONSTERGAUSS-81 program [20]; details ofthe calculation scheme have been 
reported previously [10]. (See also the footnotes to Ta\;lle 4.) 

A comparison of the results presented in Table 4 with analogous data [19] obtained 
within the framework of the Roothaan-Hartree-Fock atomic theory "expansion method") [2] 
demonstrates that the results are completely identical, as they should be. 

Such agreement is obviously not accidental and hence can be regarded as proof of the 
validity of Eq. (30). With this in view, let us examine the line of reasoning we used in 
deriving this equation. We should emphasize that the line of reasoning does not pretend to 
any mathematical rigor, but serves only as an indication of the origin' of the equation. 

Earlier in this article, it was stated that the one-electron energies Ep and Ed, as well 
as the total energy of the system, depend on the selection of the arbitrary parameters. In 
the light of the analysis that we performed, it appeared natural to impose an additional con­
dition on the VCCs in such a manner that the one-electron energies Ep and Ed would be inde­
pendent of the selection cf the arbitrary parameters. Using Eq. (17), we can represent Ep 
and Ed as follows: 

Ep = fpHp" -;- Ep(closed) + E,,(p') -:- e}J(d), . 

Ed = fdHdd + Ed(c1osed) + Ed(d') -;- Cd(P). 
(42) 

When Eqs. (25)-(27) are taken into account, it can be shown that the requirement that Ep and 
Ed be independent of the selection cf the arbitrary parameters can be reduced to the condition 

OOa) 

from which Eq. (30) follows directly.~ 

*After this article was ready for press, the authcrs were able to obtain an analytical proof 
of Eq. (30a); this will be published subsequently [22]. From the proof it follows that equa­
tions of the type of (30a) have an extremely general character and that they follow from the 
variational principle. 
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In conclusion, we wish to express our appreciation to A. I. Dement'ev, who drew our at­
tention to this problem, and to I. V. Abarenkov for valuable discussion of the work. 
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