341 research outputs found

    ITS2 based analysis of the human gastrointestinal fungal microbiota of geriatrics, oncology patients and healthy volunteers

    Get PDF
    Bakterien, Archeae, Hefen und Hyphomyceten sind Bewohner des Gastrointestinaltraktes eines gesunden, erwachsenen Menschen. Die bakterielle Diversität wurde in den letzten Jahren in vielen Studien untersucht und beschrieben. Pilze im Gastrointestinaltrakt des Menschen wurden allerdings bis zum heutigen Zeitpunkt nur sehr spärlich analysiert. Aus diesem Grund ist die Rolle der Pilze im Darmtrakt noch nicht klar definiert. Die Diversität der Pilze im menschlichen Gastrointestinaltrakt wurde anhand von Stuhlproben von 15 Geriatrikern und 15 jungen Mischköstlern, sowie von 15 Onkologie Patienten analysiert. Die Diversität der Pilze wurde mittels PCR-DGGE analysiert; für die Quantifizierung wurde eine real time PCR (qPCR) durchgeführt. Es gab keine signifikanten Unterschiede zwischen den verschiedenen Gruppen. Auch im Verlauf der Chemotherapie konnten keine signifikanten Veränderungen beobachtet werden. Außerdem konnte keine Korrelation zwischen der Pilz-Mikrobiota und der Bakterien-Mikrobiota festgestellt werden. Die Ergebnisse des PCR-DGGE fingerprintings zeigten eine große Pilzdiversität.Bacteria, archeae, yeasts and filamentous fungi are commensals of the human gastrointestinal tract of healthy individuals. Today the gastrointestinal bacterial diversity is well documented, but the fungal microbiota is poorly defined today. The fungal diversity of the human gastrointestinal tract was analyzed on the basis of faeces samples from 15 geriatrics, 15 young omnivores and 15 oncology patients. Fungal diversity was evaluated by PCR-DGGE. Real time PCR (qPCR) was used for quantitative measurement of fungi in the faecal samples. Statistical analysis shows no significant difference between the various groups. Also in course of chemotherapy no significant changes were detected. Furthermore no correlation between the fungal and bacterial microbiota was found. PCR-DGGE fingerprintings illustrated a great fungal diversity in the human gastrointestinal tract

    Chromatin decondensation in S-phase involves recruitment of Cdk2 by Cdc45 and histone H1 phosphorylation

    Get PDF
    Cdc45 is required for initiation of DNA replication and fork progression, but its function in these processes remains unknown. We show that targeting Cdc45 to specific chromosomal sites in mammalian cells results in large-scale chromatin decondensation that strongly correlates with histone H1 phosphorylation. Cdk2 is recruited to sites of Cdc45 decondensation, and Cdk2 inhibitors reduce the level of decondensation. Targeting wild-type Cdk2, but not kinase-defective Cdk2, to chromatin is also effective at inducing decondensation involving phospho-H1. Cdc45, Cdk2, Cyclin A, and phospho-H1 associate with chromatin during S-phase, and Cdc45, Cdk2, and an active H1 kinase physically interact. Replicating DNA and phospho-H1 foci colocalize in vivo, and S-phase progression and H1 phosphorylation are directly related and Cdk2 dependent. Because Cdk2 colocalizes with replication foci and H1 regulates higher-order chromatin, we suggest a model in which Cdc45 recruits Cdk2 to replication foci, resulting in H1 phosphorylation, chromatin decondensation, and facilitation of fork progression

    Mammalian MCM Loading in Late-G1 Coincides with Rb Hyperphosphorylation and the Transition to Post-Transcriptional Control of Progression into S-Phase

    Get PDF
    BACKGROUND: Control of the onset of DNA synthesis in mammalian cells requires the coordinated assembly and activation of the pre-Replication Complex. In order to understand the regulatory events controlling preRC dynamics, we have investigated how the timing of preRC assembly relates temporally to other biochemical events governing progress into S-phase. METHODOLOGY/PRINCIPAL FINDING: In murine and Chinese hamster (CHO) cells released from quiescence, the loading of the replicative MCM helicase onto chromatin occurs in the final 3-4 hrs of G(1). Cdc45 and PCNA, both of which are required for G(1)-S transit, bind to chromatin at the G(1)-S transition or even earlier in G(1), when MCMs load. An RNA polymerase II inhibitor (DRB) was added to synchronized murine keratinocytes to show that they are no longer dependent on new mRNA synthesis 3-4 hrs prior to S-phase entry, which is also true for CHO and human cells. Further, CHO cells can progress into S-phase on time, and complete S-phase, under conditions where new mRNA synthesis is significantly compromised, and such mRNA suppression causes no adverse effects on preRC dynamics prior to, or during, S-phase progression. Even more intriguing, hyperphosphorylation of Rb coincides with the start of MCM loading and, paradoxically, with the time in late-G(1) when de novo mRNA synthesis is no longer rate limiting for progression into S-phase. CONCLUSIONS/SIGNIFICANCE: MCM, Cdc45, and PCNA loading, and the subsequent transit through G(1)-S, do not depend on concurrent new mRNA synthesis. These results indicate that mammalian cells pass through a distinct transition in late-G(1) at which time Rb becomes hyperphosphorylated and MCM loading commences, but that after this transition the control of MCM, Cdc45, and PCNA loading and the onset of DNA replication are regulated at the post-transcriptional level

    Isometry groups of non-positively curved spaces: structure theory

    Full text link
    We develop the structure theory of full isometry groups of locally compact non-positively curved metric spaces. Amongst the discussed themes are de Rham decompositions, normal subgroup structure and characterising properties of symmetric spaces and Bruhat--Tits buildings. Applications to discrete groups and further developments on non-positively curved lattices are exposed in a companion paper: "Isometry groups of non-positively curved spaces: discrete subgroups".Comment: The original version (September 2, 2008) has been split into two articles. This is the first part; the second is available as of today on the arxiv under the title: "Isometry groups of non-positively curved spaces: discrete subgroups

    Cdc45 Limits Replicon Usage from a Low Density of preRCs in Mammalian Cells

    Get PDF
    Little is known about mammalian preRC stoichiometry, the number of preRCs on chromosomes, and how this relates to replicon size and usage. We show here that, on average, each 100-kb of the mammalian genome contains a preRC composed of approximately one ORC hexamer, 4–5 MCM hexamers, and 2 Cdc6. Relative to these subunits, ∼0.35 total molecules of the pre-Initiation Complex factor Cdc45 are present. Thus, based on ORC availability, somatic cells contain ∼70,000 preRCs of this average total stoichiometry, although subunits may not be juxtaposed with each other. Except for ORC, the chromatin-bound complement of preRC subunits is even lower. Cdc45 is present at very low levels relative to the preRC subunits, but is highly stable, and the same limited number of stable Cdc45 molecules are present from the beginning of S-phase to its completion. Efforts to artificially increase Cdc45 levels through ectopic expression block cell growth. However, microinjection of excess purified Cdc45 into S-phase nuclei activates additional replication foci by three-fold, indicating that Cdc45 functions to activate dormant preRCs and is rate-limiting for somatic replicon usage. Paradoxically, although Cdc45 colocalizes in vivo with some MCM sites and is rate-limiting for DNA replication to occur, neither Cdc45 nor MCMs colocalize with active replication sites. Embryonic metazoan chromatin consists of small replicons that are used efficiently via an excess of preRC subunits. In contrast, somatic mammalian cells contain a low density of preRCs, each containing only a few MCMs that compete for limiting amounts of Cdc45. This provides a molecular explanation why, relative to embryonic replicon dynamics, somatic replicons are, on average, larger and origin efficiency tends to be lower. The stable, continuous, and rate-limiting nature of Cdc45 suggests that Cdc45 contributes to the staggering of replicon usage throughout S-phase, and that replicon activation requires reutilization of existing Cdc45 during S-phase

    Curcumin: novel treatment in neonatal hypoxic-ischaemic brain injury

    Get PDF
    Hypoxic-ischaemic encephalopathy (HIE) is a major cause of mortality and morbidity in neonates, with an estimated global incidence of 3/1000 live births. HIE brain damage is associated with an inflammatory response and oxidative stress, resulting in the activation of cell death pathways. At present, therapeutic hypothermia is the only clinically approved treatment available for HIE. This approach, however, is only partially effective. There is therefore an unmet clinical need for the development of novel therapeutic interventions for the treatment of HIE. Curcumin is an antioxidant reactive oxygen species scavenger, with reported anti-tumour and anti-inflammatory activity. Curcumin has been shown to attenuate mitochondrial dysfunction, stabilise the cell membrane, stimulate proliferation, and reduce injury severity in adult models of spinal cord injury, cancer, and cardiovascular disease. The role of curcumin in neonatal HIE has not been widely studied due to its low bioavailability and limited aqueous solubility. The aim of this study was to investigate the effect of curcumin treatment in neonatal HIE, including time of administration and dose-dependent effects. Our results indicate that curcumin administration prior to HIE in neonatal mice elevated cell and tissue loss, as well as glial activation compared to HI alone. However, immediate post-treatment with curcumin was significantly neuroprotective, reducing grey and white matter tissue loss, TUNEL+ cell death, microglia activation, reactive astrogliosis and iNOS oxidative stress when compared to vehicle-treated littermates. This effect was dose-dependent, with 200µg/g body weight as the optimal dose-regimen, and was maintained when curcumin treatment was delayed by 60min or 120min post-HI. Cell proliferation measurements showed no changes between curcumin and HI alone, suggesting that the protective effects of curcumin on the neonatal brain following HI are most likely due to curcumin’s anti-inflammatory and antioxidant properties, as seen in the reduced glial and iNOS activity. In conclusion, this study suggests curcumin as a potent neuroprotective agent with potential for the treatment of HIE. The delayed application of curcumin further increases its clinical relevance

    Modeling Inhomogeneous DNA Replication Kinetics

    Get PDF
    In eukaryotic organisms, DNA replication is initiated at a series of chromosomal locations called origins, where replication forks are assembled proceeding bidirectionally to replicate the genome. The distribution and firing rate of these origins, in conjunction with the velocity at which forks progress, dictate the program of the replication process. Previous attempts at modeling DNA replication in eukaryotes have focused on cases where the firing rate and the velocity of replication forks are homogeneous, or uniform, across the genome. However, it is now known that there are large variations in origin activity along the genome and variations in fork velocities can also take place. Here, we generalize previous approaches to modeling replication, to allow for arbitrary spatial variation of initiation rates and fork velocities. We derive rate equations for left- and right-moving forks and for replication probability over time that can be solved numerically to obtain the mean-field replication program. This method accurately reproduces the results of DNA replication simulation. We also successfully adapted our approach to the inverse problem of fitting measurements of DNA replication performed on single DNA molecules. Since such measurements are performed on specified portion of the genome, the examined DNA molecules may be replicated by forks that originate either within the studied molecule or outside of it. This problem was solved by using an effective flux of incoming replication forks at the model boundaries to represent the origin activity outside the studied region. Using this approach, we show that reliable inferences can be made about the replication of specific portions of the genome even if the amount of data that can be obtained from single-molecule experiments is generally limited
    corecore