1,717 research outputs found

    Genes and Coronary Artery Disease Where Are We?

    Get PDF
    Susceptibility to coronary artery disease (CAD) is claimed to be 40% to 60% inherited, but until recently genetic risk factors predisposing to CAD have been elusive. Comprehensive prevention of CAD requires manipulation of genetic risk. The availability of microarrays of single-nucleotide polymorphisms enabling genome-wide association studies (GWAS) led to the discovery of 33 genetic risk variants for CAD. Surprisingly, 23 risk variants mediate their risk through unknown mechanisms, with only 10 associating with hypertension or lipids. Thus, there are several mechanisms contributing to the pathogenesis of CAD yet to be elucidated. The first risk variant discovered by GWAS was 9p21.3, which occurs in 75% of all populations except African, with a mean increased risk of 25% per copy. Of the 33 variants for CAD, the increased risk varies from 6% to 92% with a mean increased risk of 18%, occurring on average in 47% of the population. The maximum number of risk alleles per individual would be 66. In the CARDIoGRAM (Coronary Artery Disease Genome-wide Replication and Meta Analysis) study of 23 variants, the average per individual was 17, the minimum 7, and the maximum 37. The top 10th percentile has an odds ratio of 1.88 and the lowest percentile an odds ratio of 0.55. Routine genetic screening is unlikely until management is improved by genetic testing. Risk variants should provide pathophysiological insights and targets for novel therapy. While risk variants are less potent predictors of CAD, compared with biomarkers, they have the advantage of not changing in one's lifetime and are unaffected by diet, sex, age, or medication

    Mouse mammary tumor virus (MMTV)-like DNA sequences in the breast tumors of father, mother, and daughter

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The diagnosis of late onset breast cancer in a father, mother, and daughter living in the same house for decades suggested the possibility of an environmental agent as a common etiological factor. Both molecular and epidemiological data have indicated a possible role for the mouse mammary tumor virus (MMTV), the etiological agent of breast cancer in mice, in a certain percentage of human breast tumors. The aim of this study was to determine if MMTV might be involved in the breast cancer of this cluster of three family members.</p> <p>Results</p> <p>MMTV-like envelope (<it>env</it>) and long terminal repeat (<it>LTR</it>) sequences containing the MMTV superantigen gene (<it>sag</it>) were detected in the malignant tissues of all three family members. The amplified <it>env </it>gene sequences were 98.0%–99.6% homologous to the MMTV <it>env </it>sequences found in the GR, C3H, and BR6 mouse strains. The amplified <it>LTR </it>sequences containing <it>sag </it>sequences segregated to specific branches of the MMTV phylogenetic tree and did not form a distinct branch of their own.</p> <p>Conclusion</p> <p>The presence of MMTV-like DNA sequences in the malignant tissues of all three family members suggests the possibility of MMTV as an etiological agent. Phylogenetic data suggest that the MMTV-like DNA sequences are mouse and not human derived and that the ultimate reservoir of MMTV is most likely the mouse. Although the route by which these family members came to be infected with MMTV is unknown, the possibility exists that such infection may have resulted from a shared exposure to mice.</p

    Quantitative trait loci associated with different polar metabolites in perennial ryegrass - providing scope for breeding towards increasing certain polar metabolites

    Get PDF
    peer-reviewedBackground Recent advances in the mapping of biochemical traits have been reported in Lolium perenne. Although the mapped traits, including individual sugars and fatty acids, contribute greatly towards ruminant productivity, organic acids and amino acids have been largely understudied despite their influence on the ruminal microbiome. Results In this study, we used a targeted gas-chromatography mass spectrometry (GC-MS) approach to profile the levels of 25 polar metabolites from different classes (sugars, amino acids, phenolic acids, organic acids and other nitrogen-containing compounds) present in a L. perenne F2 population consisting of 325 individuals. A quantitative trait (QTL) mapping approach was applied and successfully identified QTLs regulating seven of those polar metabolites (L-serine, L-leucine, glucose, fructose, myo-inositol, citric acid and 2, 3-hydroxypropanoic acid).Two QTL mapping approaches were carried out using SNP markers on about half of the population only and an imputation approach using SNP and DArT markers on the entire population. The imputation approach confirmed the four QTLs found in the SNP-only analysis and identified a further seven QTLs. Conclusions These results highlight the potential of utilising molecular assisted breeding in perennial ryegrass to modulate a range of biochemical quality traits with downstream effects in livestock productivity and ruminal digestion.This study was financed through a Research Stimulus Fund Grant by the Irish Department of Agriculture, Fisheries and Marine (RSF 06–346). AF, CH and DS acknowledge support from The Scottish Government’s Rural and Environment Science and Analytical Services Division

    Computational fragment-based drug design to explore the hydrophobic subpocket of the mitotic kinesin Eg5 allosteric binding site

    Get PDF
    International audienceEg5, a mitotic kinesin exclusively involved in the formation and function of the mitotic spindle has attracted interest as an anticancer drug target. Eg5 is co-crystallized with several inhibitors bound to its allosteric binding pocket. Each of these occupies a pocket formed by loop 5/helix alpha2 (L5/alpha2). Recently designed inhibitors additionally occupy a hydrophobic pocket of this site. The goal of the present study was to explore this hydrophobic pocket with our MED-SuMo fragment-based protocol, and thus discover novel chemical structures that might bind as inhibitors. The MED-SuMo software is able to compare and superimpose similar interaction surfaces upon the whole protein data bank (PDB). In a fragment-based protocol, MED-SuMo retrieves MED-Portions that encode protein-fragment binding sites and are derived from cross-mining protein-ligand structures with libraries of small molecules. Furthermore we have excluded intra-family MED-Portions derived from Eg5 ligands that occupy the hydrophobic pocket and predicted new potential ligands by hybridization that would fill simultaneously both pockets. Some of the latter having original scaffolds and substituents in the hydrophobic pocket are identified in libraries of synthetically accessible molecules by the MED-Search software

    Lamin A/C–mediated neuromuscular junction defects in Emery-Dreifuss muscular dystrophy

    Get PDF
    The LMNA gene encodes lamins A and C, two intermediate filament-type proteins that are important determinants of interphase nuclear architecture. Mutations in LMNA lead to a wide spectrum of human diseases including autosomal dominant Emery-Dreifuss muscular dystrophy (AD-EDMD), which affects skeletal and cardiac muscle. The cellular mechanisms by which mutations in LMNA cause disease have been elusive. Here, we demonstrate that defects in neuromuscular junctions (NMJs) are part of the disease mechanism in AD-EDMD. Two AD-EDMD mouse models show innervation defects including misexpression of electrical activity–dependent genes and altered epigenetic chromatin modifications. Synaptic nuclei are not properly recruited to the NMJ because of mislocalization of nuclear envelope components. AD-EDMD patients with LMNA mutations show the same cellular defects as the AD-EDMD mouse models. These results suggest that lamin A/C–mediated NMJ defects contribute to the AD-EDMD disease phenotype and provide insights into the cellular and molecular mechanisms for the muscle-specific phenotype of AD-EDMD

    Clinical and Genetic Association of Serum Ceruloplasmin with Cardiovascular Risk

    Get PDF
    Objective—Ceruloplasmin (Cp) is an acute-phase reactant that is increased in inflammatory diseases and in acute coronary syndromes. Cp has recently been shown to possess nitric oxide (NO) oxidase catalytic activity, but its impact on long-term cardiovascular outcomes in stable cardiac patients has not been explored. Methods and Results—We examined serum Cp levels and their relationship with incident major adverse cardiovascular events (MACE; death, myocardial infarction [MI], stroke) over 3-year follow-up in 4177 patients undergoing elective coronary angiography. We also carried out a genome-wide association study to identify the genetic determinants of serum Cp levels and evaluate their relationship to prevalent and incident cardiovascular risk. In our cohort (age 63±11 years, 66% male, 32% history of MI, 31% diabetes mellitus), mean Cp level was 24±6 mg/dL. Serum Cp level was associated with greater risk of MI at 3 years (hazard ratio [quartile 4 versus 1] 2.35, 95% confidence interval [CI] 1.79–3.09, P\u3c0.001). After adjustment for traditional risk factors, high-sensitivity C-reactive protein, and creatinine clearance, Cp remained independently predictive of MACE (hazard ratio 1.55, 95% CI 1.10–2.17, P=0.012). A 2-stage genome-wide association study identified a locus on chromosome 3 over the CP gene that was significantly associated with Cp levels (lead single-nucleotide polymorphism rs13072552; P=1.90×10−11). However, this variant, which leads to modestly increased serum Cp levels (≈1.5–2 mg/dL per minor allele copy), was not associated with coronary artery disease or future risk of MACE. Conclusion—In stable cardiac patients, serum Cp provides independent risk prediction of long-term adverse cardiac events. Genetic variants at the CP locus that modestly affect serum Cp levels are not associated with prevalent or incident risk of coronary artery disease in this study population

    Clinical and Genetic Association of Serum Ceruloplasmin with Cardiovascular Risk

    Get PDF
    Objective—Ceruloplasmin (Cp) is an acute-phase reactant that is increased in inflammatory diseases and in acute coronary syndromes. Cp has recently been shown to possess nitric oxide (NO) oxidase catalytic activity, but its impact on long-term cardiovascular outcomes in stable cardiac patients has not been explored. Methods and Results—We examined serum Cp levels and their relationship with incident major adverse cardiovascular events (MACE; death, myocardial infarction [MI], stroke) over 3-year follow-up in 4177 patients undergoing elective coronary angiography. We also carried out a genome-wide association study to identify the genetic determinants of serum Cp levels and evaluate their relationship to prevalent and incident cardiovascular risk. In our cohort (age 63±11 years, 66% male, 32% history of MI, 31% diabetes mellitus), mean Cp level was 24±6 mg/dL. Serum Cp level was associated with greater risk of MI at 3 years (hazard ratio [quartile 4 versus 1] 2.35, 95% confidence interval [CI] 1.79–3.09, P\u3c0.001). After adjustment for traditional risk factors, high-sensitivity C-reactive protein, and creatinine clearance, Cp remained independently predictive of MACE (hazard ratio 1.55, 95% CI 1.10–2.17, P=0.012). A 2-stage genome-wide association study identified a locus on chromosome 3 over the CP gene that was significantly associated with Cp levels (lead single-nucleotide polymorphism rs13072552; P=1.90×10−11). However, this variant, which leads to modestly increased serum Cp levels (≈1.5–2 mg/dL per minor allele copy), was not associated with coronary artery disease or future risk of MACE. Conclusion—In stable cardiac patients, serum Cp provides independent risk prediction of long-term adverse cardiac events. Genetic variants at the CP locus that modestly affect serum Cp levels are not associated with prevalent or incident risk of coronary artery disease in this study population

    Bioprospection of Natural Sources of Polyphenols with Therapeutic Potential for Redox-Related Diseases

    Get PDF
    Funding: iNOVA4Health-UID/Multi/04462/2013, a program financially supported by Fundação para a Ciência e Tecnologia/Ministério da Educação e Ciência, through national funds and co-funded by FEDER under the PT2020 Partnership Agreement is acknowledged. This work was supported by Fundação para a Ciência e Tecnologia (IF/01097/2013 to C.N.S.), by The Scottish Government Rural and Environment Science and Analytical Services Division (A.F. and D.S.), and BacHBerry FP7-KBBE-2013-613793 (R.M., A.F., C.J., I.C., G.G., R.R.-R., J.P., A.M., C.D., D.S. and C.N.S.). T.F.O. was supported by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), and is currently supported by the DFG under Germany’s Excellence Strategy—EXC 2067/1-390729940.Plants are a reservoir of high-value molecules with underexplored biomedical applications. With the aim of identifying novel health-promoting attributes in underexplored natural sources, we scrutinized the diversity of (poly)phenols present within the berries of selected germplasm from cultivated, wild, and underutilized Rubus species. Our strategy combined the application of metabolomics, statistical analysis, and evaluation of (poly)phenols' bioactivity using a yeast-based discovery platform. We identified species as sources of (poly)phenols interfering with pathological processes associated with redox-related diseases, particularly, amyotrophic lateral sclerosis, cancer, and inflammation. In silico prediction of putative bioactives suggested cyanidin-hexoside as an anti-inflammatory molecule which was validated in yeast and mammalian cells. Moreover, cellular assays revealed that the cyanidin moiety was responsible for the anti-inflammatory properties of cyanidin-hexoside. Our findings unveiled novel (poly)phenolic bioactivities and illustrated the power of our integrative approach for the identification of dietary (poly)phenols with potential biomedical applications.publishersversionpublishe
    • …
    corecore