333 research outputs found

    Regulation of A disintegrin and metalloproteinase (ADAM) family sheddases ADAM10 and ADAM17: The emerging role of tetraspanins and rhomboids

    Get PDF
    A disintegrin and metalloprotease (ADAM) 10 and ADAM17 are ubiquitous transmembrane “molecular scissors” which proteolytically cleave, or shed, the extracellular regions of other transmembrane proteins. ADAM10 is essential for development because it cleaves Notch proteins to induce Notch signaling and regulate cell fate decisions. ADAM17 is regarded as a first line of defense against injury and infection, by releasing tumor necrosis factor α (TNFα) to promote inflammation and epidermal growth factor (EGF) receptor ligands to maintain epidermal barrier function. However, the regulation of ADAM10 and ADAM17 trafficking and activation are not fully understood. This review will describe how the TspanC8 subgroup of tetraspanins (Tspan5, 10, 14, 15, 17, and 33) and the iRhom subgroup of protease-inactive rhomboids (iRhom1 and 2) have emerged as important regulators of ADAM10 and ADAM17, respectively. In particular, they are required for the enzymatic maturation and trafficking to the cell surface of the ADAMs, and there is evidence that different TspanC8s and iRhoms target the ADAMs to distinct substrates. The TspanC8s and iRhoms have not been studied functionally on platelets. On these cells, ADAM10 is the principal sheddase for the platelet collagen receptor GPVI, and the regulatory TspanC8s are Tspan14, 15, and 33, as determined from proteomic data. Platelet ADAM17 is the sheddase for the von Willebrand factor (vWF) receptor GPIb, and iRhom2 is the only iRhom that is expressed. Induced shedding of either GPVI or GPIb has therapeutic potential, since inhibition of either receptor is regarded as a promising anti-thrombotic therapy. Targeting of Tspan14, 15, or 33 to activate platelet ADAM10, or iRhom2 to activate ADAM17, may enable such an approach to be realized, without the toxic side effects of activating the ADAMs on every cell in the body

    Do Changes in the Pace of Events Affect One-Off Judgments of Duration?

    Get PDF
    Five experiments examined whether changes in the pace of external events influence people’s judgments of duration. In Experiments 1a–1c, participants heard pieces of music whose tempo accelerated, decelerated, or remained constant. In Experiment 2, participants completed a visuo-motor task in which the rate of stimulus presentation accelerated, decelerated, or remained constant. In Experiment 3, participants completed a reading task in which facts appeared on-screen at accelerating, decelerating, or constant rates. In all experiments, the physical duration of the to-be-judged interval was the same across conditions. We found no significant effects of temporal structure on duration judgments in any of the experiments, either when participants knew that a time estimate would be required (prospective judgments) or when they did not (retrospective judgments). These results provide a starting point for the investigation of how temporal structure affects one-off judgments of duration like those typically made in natural settings

    The Peculiar Debris Disk of HD 111520 as Resolved by the Gemini Planet Imager

    Full text link
    Using the Gemini Planet Imager (GPI), we have resolved the circumstellar debris disk around HD 111520 at a projected range of ~30-100 AU in both total and polarized HH-band intensity. The disk is seen edge-on at a position angle of ~165^{\circ} along the spine of emission. A slight inclination or asymmetric warping are covariant and alters the interpretation of the observed disk emission. We employ 3 point spread function (PSF) subtraction methods to reduce the stellar glare and instrumental artifacts to confirm that there is a roughly 2:1 brightness asymmetry between the NW and SE extension. This specific feature makes HD 111520 the most extreme examples of asymmetric debris disks observed in scattered light among similar highly inclined systems, such as HD 15115 and HD 106906. We further identify a tentative localized brightness enhancement and scale height enhancement associated with the disk at ~40 AU away from the star on the SE extension. We also find that the fractional polarization rises from 10 to 40% from 0.5" to 0.8" from the star. The combination of large brightness asymmetry and symmetric polarization fraction leads us to believe that an azimuthal dust density variation is causing the observed asymmetry.Comment: 9 pages, 8 Figures, 1 table, Accepted to Ap

    Regulation of Leukocytes by TspanC8 Tetraspanins and the “Molecular Scissor” ADAM10

    Get PDF
    A disintegrin and metalloproteinase 10 (ADAM10) is a ubiquitous transmembrane protein that functions as a “molecular scissor” to cleave the extracellular regions from its transmembrane target proteins. ADAM10 is well characterized as the ligand-dependent activator of Notch proteins, which control cell fate decisions. Indeed, conditional knockouts of ADAM10 in mice reveal impaired B-, T-, and myeloid cell development and/or function. ADAM10 cleaves many other leukocyte-expressed substrates. On B-cells, ADAM10 cleavage of the low-affinity IgE receptor CD23 promotes allergy and asthma, cleavage of ICOS ligand impairs antibody responses, and cleavage of the BAFF–APRIL receptor transmembrane activator and CAML interactor, and BAFF receptor, reduce B-cell survival. On microglia, increased ADAM10 cleavage of a rare variant of the scavenger receptor triggering receptor expressed on myeloid cells 2 may increase susceptibility to Alzheimer’s disease. We and others recently showed that ADAM10 interacts with one of six different regulatory tetraspanin membrane proteins, which we termed the TspanC8 subgroup, comprising Tspan5, Tspan10, Tspan14, Tspan15, Tspan17, and Tspan33. The TspanC8s are required for ADAM10 exit from the endoplasmic reticulum, and emerging evidence suggests that they dictate ADAM10 subcellular localization and substrate specificity. Therefore, we propose that ADAM10 should not be regarded as a single scissor, but as six different scissors with distinct substrate specificities, depending on the associated TspanC8. In this review, we collate recent transcriptomic data to present the TspanC8 repertoires of leukocytes, and we discuss the potential role of the six TspanC8/ADAM10 scissors in leukocyte development and function

    Testing the Interaction Between a Substellar Companion and a Debris Disk in the Hr 2562 System

    Get PDF
    The HR 2562 system is a rare case where a brown dwarf companion resides in a cleared inner hole of a debris disk, offering invaluable opportunities to study the dynamical interaction between a substellar companion and a dusty disk. We present the first ALMA observation of the system as well as the continued Gemini Planet Imager monitoring of the companion\u27s orbit with six new epochs from 2016 to 2018. We update the orbital fit, and in combination with absolute astrometry from GAIA, place a 3σ upper limit of 18.5 M J on the companion\u27s mass. To interpret the ALMA observations, we used radiative transfer modeling to determine the disk properties. We find that the disk is well resolved and nearly edge-on. While the misalignment angle between the disk and the orbit is weakly constrained, due to the short orbital arc available, the data strongly support a (near) coplanar geometry for the system. Furthermore, we find that the models that describe the ALMA data best have inner radii that are close to the companion\u27s semimajor axis. Including a posteriori knowledge of the system\u27s SED further narrows the constraints on the disk\u27s inner radius and places it at a location that is in reasonable agreement with (possibly interior to) predictions from existing dynamical models of disk truncation by an interior substellar companion. HR 2562 has the potential over the next few years to become a new test bed for dynamical interaction between a debris disk and a substellar companion

    The tetraspanin Tspan15 is an essential subunit of an ADAM10 scissor complex

    Get PDF
    A disintegrin and metalloprotease 10 (ADAM10) is a transmembrane protein essential for embryonic development, and its dysregulation underlies disorders such as cancer, Alzheimer's disease, and inflammation. ADAM10 is a molecular scissor that proteolytically cleaves the extracellular region from >100 substrates, including Notch, amyloid precursor protein, cadherins, growth factors, and chemokines. ADAM10 has been recently proposed to function as six distinct scissors with different substrates, depending on its association with one of six regulatory tetraspanins, termed TspanC8s. However, it remains unclear to what degree ADAM10 function critically depends on a TspanC8 partner, and a lack of monoclonal antibodies specific for most TspanC8s has hindered investigation of this question. To address this knowledge gap, here we designed an immunogen to generate the first monoclonal antibodies targeting Tspan15, a model TspanC8. The immunogen was created in an ADAM10-knockout mouse cell line stably overexpressing human Tspan15, because we hypothesized that expression in this cell line would expose epitopes that are normally blocked by ADAM10. Following immunization of mice, this immunogen strategy generated four Tspan15 antibodies. Using these antibodies, we show that endogenous Tspan15 and ADAM10 co-localize on the cell surface, that ADAM10 is the principal Tspan15-interacting protein, that endogenous Tspan15 expression requires ADAM10 in cell lines and primary cells, and that a synthetic ADAM10/Tspan15 fusion protein is a functional scissor. Furthermore, two of the four antibodies impaired ADAM10/Tspan15 activity. These findings suggest that Tspan15 directly interacts with ADAM10 in a functional scissor complex

    Imaging the 44 au Kuiper Belt Analog Debris Ring around HD 141569A With GPI Polarimetry

    Get PDF
    We present the first polarimetric detection of the inner disk component around the pre-main-sequence B9.5 star HD 141569A. Gemini Planet Imager H-band (1.65 μm) polarimetric differential imaging reveals the highest signal-to-noise ratio detection of this ring yet attained and traces structure inward to 0.″25 (28 au at a distance of 111 pc). The radial polarized intensity image shows the east side of the disk, peaking in intensity at 0.″40 (44 au) and extending out to 0.″9 (100 au). There is a spiral arm-like enhancement to the south, reminiscent of the known spiral structures on the outer rings of the disk. The location of the spiral arm is coincident with 12CO J = 3-2 emission detected by ALMA and hints at a dynamically active inner circumstellar region. Our observations also show a portion of the middle dusty ring at ∼220 au known from previous observations of this system. We fit the polarized H-band emission with a continuum radiative transfer Mie model. Our best-fit model favors an optically thin disk with a minimum dust grain size close to the blowout size for this system, evidence of ongoing dust production in the inner reaches of the disk. The thermal emission from this model accounts for virtually all of the far-infrared and millimeter flux from the entire HD 141569A disk, in agreement with the lack of ALMA continuum and CO emission beyond ∼100 au. A remaining 8-30 μm thermal excess a factor of ∼2 above our model argues for an as-yet-unresolved warm innermost 5-15 au component of the disk
    corecore