2,667 research outputs found
A Note on Schwinger Mechanism and a Nonabelian Instability in a Nonabelian Plasma
We point out that there is a nonabelian instability for a nonabelian plasma
which does not allow both for a net nonzero color charge and the existence of
field configurations which are coherent over a volume whose size is
determined by the chemical potential. The basic process which leads to this
result is the Schwinger decay of chromoelectric fields, for the case where the
field arises from commutators of constant potentials, rather than as the curl
of spacetime dependent potentials. In terms of the fields, instability is
obtained when Tr(DF)^2 > 0.Comment: 14 pages, 6 figure
Sedimentation of a two-dimensional colloidal mixture exhibiting liquid-liquid and gas-liquid phase separation: a dynamical density functional theory study
We present dynamical density functional theory results for the time evolution
of the density distribution of a sedimenting model two-dimensional binary
mixture of colloids. The interplay between the bulk phase behaviour of the
mixture, its interfacial properties at the confining walls, and the
gravitational field gives rise to a rich variety of equilibrium and
non-equilibrium morphologies. In the fluid state, the system exhibits both
liquid-liquid and gas-liquid phase separation. As the system sediments, the
phase separation significantly affects the dynamics and we explore situations
where the final state is a coexistence of up to three different phases. Solving
the dynamical equations in two-dimensions, we find that in certain situations
the final density profiles of the two species have a symmetry that is different
from that of the external potentials, which is perhaps surprising, given the
statistical mechanics origin of the theory. The paper concludes with a
discussion on this
Assessment of Efficiency of Drying Grain Materials Using Microwave Heating
We present results of experimental work on studying the drying of a dense layer of grain using microwave heating. We investigated a series of techniques to supply heat to grain to assess energy efficiency of a microwave field. We studied the following ways of drying: a microwave method, a pulsating microwave method, a microwave-convective cyclic method with blow of a layer with heated air flow and air without preheating, simultaneous microwave-convective drying method.Studying the kinetics of drying in a microwave field showed that we can divide the process into heating periods (zero drying rate), constant (first drying rate) and falling (second drying rate). These periods are characteristic for drying of colloidal capillary-porous bodies at other methods of heat supply. We obtained empirical relationships for the drying rate and the average temperature of grain in the first period based on the generalization of experimental data on the study on drying of grain of buckwheat, barley, oats, and wheat. We presented kinetic dependences in a dimensionless form. They summarize data on the studied grains. The aim of comprehensive studies of various methods of heat supply during drying was determination of the optimal method and rational operational parameters, which ensure high intensity of the process and the required quality of the finished product with minimal energy consumption.All studies took place under identical conditions and for the same grain (oats) to ensure the accuracy of the comparison. We determined that the most preferable method is a simultaneous microwave-convective energy supply without air preheating, which minimizes specific energy consumption. Experimental studies on drying using a microwave field made possible to select the required process parameters: power, heating rate, mass, and form of loading. We plan to develop a technology for drying of grain using microwave energy based on the study dat
Wetting on a spherical wall: influence of liquid-gas interfacial properties
We study the equilibrium of a liquid film on an attractive spherical
substrate for an intermolecular interaction model exhibiting both fluid-fluid
and fluid-wall long-range forces. We first reexamine the wetting properties of
the model in the zero-curvature limit, i.e., for a planar wall, using an
effective interfacial Hamiltonian approach in the framework of the well known
sharp-kink approximation (SKA). We obtain very good agreement with a mean-field
density functional theory (DFT), fully justifying the use of SKA in this limit.
We then turn our attention to substrates of finite curvature and appropriately
modify the so-called soft-interface approximation (SIA) originally formulated
by Napi\'orkowski and Dietrich [Phys. Rev. B 34, 6469 (1986)] for critical
wetting on a planar wall. A detailed asymptotic analysis of SIA confirms the
SKA functional form for the film growth. However, it turns out that the
agreement between SKA and our DFT is only qualitative. We then show that the
quantitative discrepancy between the two is due to the overestimation of the
liquid-gas surface tension within SKA. On the other hand, by relaxing the
assumption of a sharp interface, with, e.g., a simple smoothing of the density
profile there, markedly improves the predictive capability of the theory,
making it quantitative and showing that the liquid-gas surface tension plays a
crucial role when describing wetting on a curved substrate. In addition, we
show that in contrast to SKA, SIA predicts the expected mean-field critical
exponent of the liquid-gas surface tension
Assessment of Efficiency of Drying Grain Materials Using Microwave Heating
We present results of experimental work on studying the drying of a dense layer of grain using microwave heating. We investigated a series of techniques to supply heat to grain to assess energy efficiency of a microwave field. We studied the following ways of drying: a microwave method, a pulsating microwave method, a microwave-convective cyclic method with blow of a layer with heated air flow and air without preheating, simultaneous microwave-convective drying method.Studying the kinetics of drying in a microwave field showed that we can divide the process into heating periods (zero drying rate), constant (first drying rate) and falling (second drying rate). These periods are characteristic for drying of colloidal capillary-porous bodies at other methods of heat supply. We obtained empirical relationships for the drying rate and the average temperature of grain in the first period based on the generalization of experimental data on the study on drying of grain of buckwheat, barley, oats, and wheat. We presented kinetic dependences in a dimensionless form. They summarize data on the studied grains. The aim of comprehensive studies of various methods of heat supply during drying was determination of the optimal method and rational operational parameters, which ensure high intensity of the process and the required quality of the finished product with minimal energy consumption.All studies took place under identical conditions and for the same grain (oats) to ensure the accuracy of the comparison. We determined that the most preferable method is a simultaneous microwave-convective energy supply without air preheating, which minimizes specific energy consumption. Experimental studies on drying using a microwave field made possible to select the required process parameters: power, heating rate, mass, and form of loading. We plan to develop a technology for drying of grain using microwave energy based on the study dat
FPGA Implementation of Convolutional Neural Networks with Fixed-Point Calculations
Neural network-based methods for image processing are becoming widely used in
practical applications. Modern neural networks are computationally expensive
and require specialized hardware, such as graphics processing units. Since such
hardware is not always available in real life applications, there is a
compelling need for the design of neural networks for mobile devices. Mobile
neural networks typically have reduced number of parameters and require a
relatively small number of arithmetic operations. However, they usually still
are executed at the software level and use floating-point calculations. The use
of mobile networks without further optimization may not provide sufficient
performance when high processing speed is required, for example, in real-time
video processing (30 frames per second). In this study, we suggest
optimizations to speed up computations in order to efficiently use already
trained neural networks on a mobile device. Specifically, we propose an
approach for speeding up neural networks by moving computation from software to
hardware and by using fixed-point calculations instead of floating-point. We
propose a number of methods for neural network architecture design to improve
the performance with fixed-point calculations. We also show an example of how
existing datasets can be modified and adapted for the recognition task in hand.
Finally, we present the design and the implementation of a floating-point gate
array-based device to solve the practical problem of real-time handwritten
digit classification from mobile camera video feed
Discovery From Non-Parties (Third-Party Discovery) in International Arbitration
International arbitration rules and many arbitration laws usually provide procedures that permit tribunals to order parties to disclose documents and other materials to the other parties.1 More complex are the rules that determine opportunities to obtain discovery from persons that are not party to the arbitration (third-party discovery). This article will review third-party discovery under the Federal Arbitration Act (FAA) and the provisions of the US Code s.1782 that authorise US courts to act in aid of actions before foreign tribunals. Section 1782 has unique interest at this time because it figured prominently in the EU antitrust investigation of Intel that was initiated on request from Advanced Micro Devices (AMD). Early in that investigation, AMD filed a s.1782 request in the US District Court to obtain evidence from US sources for submission to the DG-Competition of the European Commission (EC). This request ultimately led to the Supreme Court’s decision in Intel Corp v Advanced Micro Devices Inc2 which appeared to significantly expand the scope of s.1782. Ironically, after AMD won on key legal issues in the Supreme Court, the District Court on remand exercised its discretion and denied the request for judicial assistance. This paper first describes the FAA non-party discovery rules and the split among the federal appellate courts concerning the authority of arbitrators to order prehearing discovery from non-parties. Next, it provides an analysis of the meaning of the terms “interested party” and “tribunal”—terms that were controversially interpreted by the Supreme Court in Intel and are essential to the application of s.1782. Finally, it discusses the “discretionary” factors used by the federal courts in deciding whether to grant a s.1782 request even when the statutory criteria are met. The opportunity to exercise this discretion seems to rebut the argument that the Supreme Court’s interpretation of s.1782 gives participants before foreign tribunals more discovery rights in the United States than are available to the parties in arbitrations covered by the FAA
Two-photon form factors of the pi0, eta and eta-prime mesons in the chiral theory with resonances
We have developed a phenomenological approach which describes very well the
pi0, eta and eta-prime meson production in the two-photon interactions. The
simultaneous description of the pi0, eta and eta-prime meson two-photon form
factors is consistent with data in the space-like region. The obtained form
factors are implemented in the event generator EKHARA and the simulated cross
sections are presented. Uncertainties in the measured form factors coming from
the model dependence in Monte Carlo simulations are studied. The model
predictions for the form factor slopes at the origin are given and the high-Q2
limit is also discussed.Comment: 11 pages, 7 figures, 3 tables; two-column revtex4 styl
Kinases and pseudokinases: Lessons from RAF
Protein kinases are thought to mediate their biological effects through their catalytic activity. The large number of pseudokinases in the kinome and an increasing appreciation that they have critical roles in signaling pathways, however, suggest that catalyzing protein phosphorylation may not be the only function of protein kinases. Using the principle of hydrophobic spine assembly, we interpret how kinases are capable of performing a dual function in signaling. Its first role is that of a signaling enzyme (classical kinases; canonical), while its second role is that of an allosteric activator of other kinases or as a scaffold protein for signaling in a manner that is independent of phosphoryl transfer (classical pseudokinases; noncanonical). As the hydrophobic spines are a conserved feature of the kinase domain itself, all kinases carry an inherent potential to play both roles in signaling. This review focuses on the recent lessons from the RAF kinases that effectively toggle between these roles and can be “frozen” by introducing mutations at their hydrophobic spines
- …
