12 research outputs found

    SARS coronavirus protein 7a interacts with human Ap4A-hydrolase

    Get PDF
    The SARS coronavirus (SARS-CoV) open reading frame 7a (ORF 7a) encodes a 122 amino acid accessory protein. It has no significant sequence homology with any other known proteins. The 7a protein is present in the virus particle and has been shown to interact with several host proteins; thereby implicating it as being involved in several pathogenic processes including apoptosis, inhibition of cellular protein synthesis, and activation of p38 mitogen activated protein kinase. In this study we present data demonstrating that the SARS-CoV 7a protein interacts with human Ap4A-hydrolase (asymmetrical diadenosine tetraphosphate hydrolase, EC 3.6.1.17). Ap4A-hydrolase is responsible for metabolizing the "allarmone" nucleotide Ap4A and therefore likely involved in regulation of cell proliferation, DNA replication, RNA processing, apoptosis and DNA repair. The interaction between 7a and Ap4A-hydrolase was identified using yeast two-hybrid screening. The interaction was confirmed by co-immunoprecipitation from cultured human cells transiently expressing V5-His tagged 7a and HA tagged Ap4A-hydrolase. Human tissue culture cells transiently expressing 7a and Ap4A-hydrolase tagged with EGFP and Ds-Red2 respectively show these proteins co-localize in the cytoplasm

    A recombinant E1-deleted porcine adenovirus-3 as an expression vector

    Get PDF
    AbstractReplication-defective E1-deleted porcine adenoviruses (PAVs) are attractive vectors for vaccination. As a prerequisite for generating PAV-3 vectors containing complete deletion of E1, we transfected VIDO R1 cells (fetal porcine retina cells transformed with E1 region of human adenovirus 5) with a construct containing PAV-3 E1Blarge coding sequences under the control of HCMV promoter. A cell line named VR1BL could be isolated that expressed E1Blarge of PAV-3 and also complemented PAV214 (E1A+E1Bsmall deleted). The VR1BL cells could be efficiently transfected with DNA and allowed the rescue and propagation of recombinant PAV507 containing a triple stop codon inserted in the E1Blarge coding sequence. In addition, recombinant PAV227 containing complete deletion of E1 (E1A+E1Bsmall + E1Blarge) could be successfully rescued using VR1BL cell line. Recombinant PAV227 replicated as efficiently as wild-type in VR1BL cells but not in VIDO R1 cells, suggesting that E1Blarge was essential for replication of PAV-3. Next, we constructed recombinant PAV219 by inserting green fluorescent (GFP) protein gene flanked by a promoter and a poly(A) in the E1 region of the PAV227 genome. We demonstrated that PAV219 was able to transduce and direct expression of GFP in some human cell lines

    Potential Role of Porcine Reproductive and Respiratory Syndrome Virus Structural Protein GP2 in Apoptosis Inhibition

    Get PDF
    Porcine reproductive and respiratory syndrome virus (PRRSV) is a serious threat to the pork industry, and its pathogenesis needs further investigations. To study the role of two structural proteins of PRRSV in virus-host cells interactions, two stable cell lines (MARC-2a and MARC-N) expressing GP2 and N proteins, respectively, were established. We induced apoptosis in these cells by treating them with staurosporine and found a significant reduction in the number of apoptotic cells in MARC-2a as compared to MARC-N and MARC-145 cells. In addition, we found significantly higher activities of transcriptional factors (NF-B and AP-1) in both cell lines as compared to MARC-145 (parent cells). Overall, our data suggest that, although both stable cell lines activate NF-B and AP-1, GP2 triggers the antiapoptotic process through an intermediate step that needs to be further investigated

    Development of novel adenoviral vectors to overcome challenges observed with HAdV-5 based constructs

    Get PDF
    Recombinant vectors based on human adenovirus serotype 5 (HAdV-5) have been extensively studied in pre-clinical models and clinical trials over the last two decades. However, the thorough understanding of the HAdV-5 interaction with human subjects has uncovered major concerns about its product applicability. High vector-associated toxicity and widespread pre-existing immunity have been shown to significantly impede the effectiveness of HAdV-5 mediated gene transfer. It is therefore that the in depth knowledge attained working on HAdV-5 is currently being used to develop alternative vectors. Here, we provide a comprehensive overview of data obtained in recent years disqualifying the HAdV-5 vector for systemic gene delivery as well as novel strategies being pursued to overcome the limitations observed with particular emphasis on the ongoing vectorization efforts to obtain vectors based on alternative serotypes

    Development of novel adenoviral vectors to overcome challenges observed with HAdV-5-based constructs

    Get PDF
    Recombinant vectors based on human adenovirus serotype 5 (HAdV-5) have been extensively studied in pre-clinical models and clinical trials over the last two decades. However, the thorough understanding of the HAdV-5 interaction with human subjects has uncovered major concerns about its product applicability. High vector-associated toxicity and widespread pre-existing immunity have been shown to significantly impede the effectiveness of HAdV-5 mediated gene transfer. It is therefore that the in depth knowledge attained working on HAdV-5 is currently being used to develop alternative vectors. Here, we provide a comprehensive overview of data obtained in recent years disqualifying the HAdV-5 vector for systemic gene delivery as well as novel strategies being pursued to overcome the limitations observed with particular emphasis on the ongoing vectorization efforts to obtain vectors based on alternative serotypes

    An adenoviral type 5 vector carrying a type 35 fiber as a vaccine vehicle: DC targeting, cross neutralization, and immunogenicity

    No full text
    Substituting the coat proteins of adenoviral vector serotype 5 (Ad5) can alter vector tropism and circumvent vector neutralization. Here we report that an Ad5 vector carrying a part of the fiber molecule of human subgroup B adenovirus serotype 35 (Ad5.Fib35) transduces cultured human dendritic cells (DC) and circulating myeloid derived DC with approximately 10-fold greater efficiency than Ad5 in vitro. The improved DC transduction results in increased T-cell activation ex vivo. In vivo however, immunogenicity of the vectors in mice and non-human primates did not correlate with in vitro DC tropism. Ad5.Fib35 was less immunogenic in monkeys than Ad5, despite the improved primate DC tropism of Ad5.Fib35. In mice with high Ad5 vector-specific immunity, Ad5.Fib35 showed no significant difference in anti-insert immunity over Ad5 indicating that fiber exchange alone does not evade pre-existing Ad5 immunity. We thus conclude that, for ex vivo vaccination, Ad5.Fib35 shows promise as vector for loading of DC but is unable to circumvent anti-Ad5 immunity limiting its in vivo utilit
    corecore