89 research outputs found

    On separable Schr\"odinger equations

    Full text link
    We classify (1+3)-dimensional Schr\"odinger equations for a particle interacting with the electromagnetic field that are solvable by the method of separation of variables. As a result, we get eleven classes of the electromagnetic vector potentials of the electromagnetic field A(t,x)=(A0(t,x)A(t, \vec x)=(A_0(t, \vec x), A(t,x))\vec A(t, \vec x)) providing separability of the corresponding Schr\"odinger equations. It is established, in particular, that the necessary condition for the Schr\"odinger equation to be separable is that the magnetic field must be independent of the spatial variables. Next, we prove that any Schr\"odinger equation admitting variable separation into second-order ordinary differential equations can be reduced to one of the eleven separable Schr\"odinger equations mentioned above and carry out variable separation in the latter. Furthermore, we apply the results obtained for separating variables in the Hamilton-Jacobi equation.Comment: 30 pages, LaTe

    Bafilomycin A1 activates HIF-dependent signalling in human colon cancer cells via mitochondrial uncoupling

    Get PDF
    Synopsis Mitochondrial uncoupling is implicated in many patho(physiological) states. Using confocal live cell imaging and an optical O-2 sensing technique, we show that moderate uncoupling of the mitochondria with plecomacrolide Baf (bafilomycin A1) causes partial depolarization of the mitochondria and deep sustained deoxygenation of human colon cancer HCT116 cells subjected to 6% atmospheric O-2. A decrease in iO(2) (intracellular 02) to 0-10 mu M, induced by Baf, is sufficient for stabilization of HIFs (hypoxia inducible factors) HIF-1 alpha and HIF-2 alpha, coupled with an increased expression of target genes including GLUT1 (glucose transporter 1), HIF PHD2 (prolyl hydroxylase domain 2) and CAIX (carbonic anhydrase IX). Under the same hypoxic conditions, treatment with Baf causes neither decrease in iO(2) nor HIF-alpha stabilization in the low-respiring HCT116 cells deficient in COX (cytochrome c-oxidase). Both cell types display equal capacities for HIF-alpha stabilization by hypoxia mimetics DMOG (dimethyloxalylglycine) and CoCl2, thus suggesting that the effect of Baf under hypoxia is driven mainly by mitochondrial respiration. Altogether, by activating HIF signalling under moderate hypoxia, mitochondrial uncoupling can play an important regulatory role in colon cancer metabolism and modulate adaptation of cancer cells to natural hypoxic environments

    Cellular ROS imaging with hydro-Cy3 dye is strongly influenced by mitochondrial membrane potential

    Get PDF
    Background: Hydrocyanines are widely used as fluorogenic probes to monitor reactive oxygen species (ROS) generation in cells. Their brightness, stability to autoxidation and photobleaching, large signal change upon oxidation, pH independence and red/near infrared emission are particularly attractive for imaging ROS in live tissue. Methods: Using confocal fluorescence microscopy we have examined an interference of mitochondrial membrane potential (ΔΨm) with fluorescence intensity and localisation of a commercial hydro-Cy3 probe in respiring and non-respiring colon carcinoma HCT116 cells. Results: We found that the oxidised (fluorescent) form of hydro-Cy3 is highly homologous to the common ΔΨm-sensitive probe JC-1, which accumulates and aggregates only in ‘energised’ negatively charged mitochondrial matrix. Therefore, hydro-Cy3 oxidised by hydroxyl and superoxide radicals tends to accumulate in mitochondrial matrix, but dissipates and loses brightness as soon as ΔΨm is compromised. Experiments with mitochondrial inhibitor oligomycin and uncoupler FCCP, as well as a common ROS producer paraquat demonstrated that signals of the oxidised hydro-Cy3 probe rapidly and strongly decrease upon mitochondrial depolarisation, regardless of the rate of cellular ROS production. Conclusions: While analysing ROS-derived fluorescence of commercial hydrocyanine probes, an accurate control of ΔΨm is required. General significance: If not accounted for, non-specific effect of mitochondrial polarisation state on the behaviour of oxidised hydrocyanines can cause artefacts and data misinterpretation in ROS studies

    Activation of the NFAT–calcium signaling pathway in human lamina cribrosa cells in glaucoma

    Get PDF
    Purpose: Optic nerve cupping in glaucoma is characterized by remodeling of the extracellular matrix (ECM) and fibrosis in the lamina cribrosa (LC). We have previously shown that glaucoma LC cells express raised levels of ECM genes and have elevated intracellular calcium ([Ca2+]i). Raised [Ca2+]i is known to promote proliferation, activation, and contractility in fibroblasts via the calcineurin–NFAT (nuclear factor of activated T-cells) signaling pathway. In this study, we examine NFAT expression in normal and glaucoma LC cells, and investigate the effect of cyclosporin A (CsA, a known inhibitor of NFAT activity) on [Ca2+]i and ECM gene expression in normal and glaucoma LC cells. Methods: [Ca2+]i was measured with dual-wavelength Ca2+ imaging and confocal microscopy using Fura-2-AM and Fluo-4 under physiological isotonic and hypotonic cell stretch treatment. Human donor LC cells were cultured under normal physiological conditions or using a glaucoma-related stimulus, oxidative stress (H2O2, 100 μM), for 6 hours with or without CsA. NFATc3 protein levels were examined using Western blot analysis. Profibrotic ECM gene transcription (including transforming growth factor-β1 [TGFβ1], collagen 1A1 [Col1A1], and periostin) was analyzed using quantitative real time RT-PCR. Results: Basal and hypotonic cell membrane stretch-induced [Ca2+]i were significantly (P < 0.05) elevated in glaucoma LC cells compared to normal controls. There was a significant delay in [Ca2+]i reuptake into internal stores in the glaucoma LC cells. NFATc3 protein levels were increased in glaucoma LC cells. CsA (10 μM) significantly inhibited the H2O2-induced expression of NFATc3 in normal and glaucoma LC cells. CsA also reduced the H2O2-induced NFATc3 dephosphorylation (and nuclear translocation), and also suppressed the H2O2-induced elevation in profibrotic ECM genes (TGFβ1, Col1A1, and periostin), both in normal and in glaucoma LC cells. Conclusions: Intracellular Ca2+ and NFATc3 expression were significantly increased in glaucoma LC cells. CsA reduced the H2O2-induced enhancement in NFATc3 protein expression and nuclear translocation and the profibrotic gene expression both in normal and in glaucoma LC cells. Therefore, targeting the calcineurin–NFATc3 signaling pathway may represent a potential avenue for treating glaucoma-associated LC fibrosis

    Oxygen and glucose deprivation induces widespread alterations in mRNA translation within 20 minutes

    Get PDF
    Background: Oxygen and glucose metabolism play pivotal roles in many (patho) physiological conditions. In particular, oxygen and glucose deprivation (OGD) during ischemia and stroke results in extensive tissue injury and cell death. Results: Using time-resolved ribosome profiling, we assess gene expression levels in a neural cell line, PC12, during the first hour of OGD. The most substantial alterations are seen to occur within the first 20 minutes of OGD. While transcription of only 100 genes is significantly altered during one hour of OGD, the translation response affects approximately 3,000 genes. This response involves reprogramming of initiation and elongation rates, as well as the stringency of start codon recognition. Genes involved in oxidative phosphorylation are most affected. Detailed analysis of ribosome profiles reveals salient alterations of ribosome densities on individual mRNAs. The mRNA-specific alterations include increased translation of upstream open reading frames, site-specific ribosome pauses, and production of alternative protein isoforms with amino-terminal extensions. Detailed analysis of ribosomal profiles also reveals six mRNAs with translated ORFs occurring downstream of annotated coding regions and two examples of dual coding mRNAs, where two protein products are translated from the same long segment of mRNA, but in two different frames. Conclusions: These findings uncover novel regulatory mechanisms of translational response to OGD in mammalian cells that are different from the classical pathways such as hypoxia inducible factor (HIF) signaling, while also revealing sophisticated organization of protein coding information in certain genes

    Discovery of a novel non-narcotic analgesic derived from the CL-20 explosive: Synthesis, pharmacology, and target identification of thiowurtzine, a potent inhibitor of the opioid receptors and the ion channels

    Get PDF
    The number of candidate molecules for new non-narcotic analgesics is extremely limited. Here, we report the identification of thiowurtzine, a new potent analgesic molecule with promising application in chronic pain treatment. We describe the chemical synthesis of this unique compound derived from the hexaazaisowurtzitane (CL-20) explosive molecule. Then, we use animal experiments to assess its analgesic activity in vivo upon chemical, thermal, and mechanical exposures, compared to the effect of several reference drugs. Finally, we investigate the potential receptors of thiowurtzine in order to better understand its complex mechanism of action. We use docking, molecular modeling, and molecular dynamics simulations to identify and characterize the potential targets of the drug and confirm the results of the animal experiments. Our findings finally indicate that thiowurtzine may have a complex mechanism of action by essentially targeting the mu opioid receptor, the TRPA1 ion channel, and the Cav voltage-gated calcium channel

    Translation initiation downstream from annotated start codons in human mRNAs coevolves with the Kozak context

    Get PDF
    Eukaryotic translation initiation involves preinitiation ribosomal complex 5′ -to-3′ directional probing of mRNA for codons suitable for starting protein synthesis. The recognition of codons as starts depends on the codon identity and on its immediate nucleotide context known as Kozak context. When the context is weak (i.e., nonoptimal), leaky scanning takes place during which a fraction of ribosomes continues the mRNA probing. We explored the relationship between the context of AUG codons annotated as starts of protein-coding sequences and the next AUG codon occurrence. We found that AUG codons downstream from weak starts occur in the same frame more frequently than downstream from strong starts. We suggest that evolutionary selection on in-frame AUGs downstream from weak start codons is driven by the advantage of the reduction of wasteful out-of-frame product synthesis and also by the advantage of producing multiple proteoforms from certain mRNAs. We confirmed translation initiation downstream from weak start codons using ribosome profiling data. We also tested translation of alternative start codons in 10 specific human genes using reporter constructs. In all tested cases, initiation at downstream start codons was more productive than at the annotated ones. In most cases, optimization of Kozak context did not completely abolish downstream initiation, and in the specific example of CMPK1 mRNA, the optimized start remained unproductive. Collectively, our work reveals previously uncharacterized forces shaping the evolution of protein-coding genes and points to the plurality of translation initiation and the existence of sequence features influencing start codon selection, other than Kozak context.Russian Science Foundation (RSF) 20-14-00121Science Foundation Ireland 210692/Z/18/ZScience Foundation Ireland 12/RC/2276_P2Erasmus+ ProgrammePlan Propio de Investigacion 2019 de la Universidad de GranadaMinistry of Economy of Spain DPI2017-84439-REuropean Union (EU) DPI2017-84439-

    All-fiber highly chirped dissipative soliton generation in the telecom range

    Get PDF
    A high-energy (0.93 nJ) all-fiber erbium femtosecond oscillator operating in the telecom spectral range is proposed and realized. The laser cavity, built of commercially available fibers and components, combines polarization maintaining (PM) and non-PM parts providing stable generation of highly chirped (chirp parameter 40) pulses compressed in an output piece of standard PM fiber to 165 fs. The results of the numerical simulation agree well with the experiment. The analyzed intracavity pulse dynamics enables the classification of the generated pulses as dissipative solitons

    A new macro-imager based on Tpx3Cam optical camera for PLIM applications

    Get PDF
    The recently designed Tpx3Cam camera based PLIM (Phosphorescence Lifetime IMaging) macro-imager was tested using an array of phosphorescent chemical and biological samples. A series of sensor materials prepared by incorporating the phosphorescent O2-sensitive dye, PtBP, into five polymers with different O2 permeability were imaged along with several commercial and non-commercial sensors based on PtBP and PtOEPK dyes. The PLIM images showed good lifetime contrast between the different materials, and phosphorescence lifetime values obtained were consistent with those measured by alternative methods. A panel of live tissues samples stained with PtBP based nanoparticle probe were also prepared and imaged under resting conditions and upon inhibition of respiration. The macro-imager showed promising results as a tool for PLIM of O2 in chemical and biological samples
    corecore