4,890 research outputs found

    Tailoring and enhancing spontaneous two-photon emission processes using resonant plasmonic nanostructures

    Get PDF
    The rate of spontaneous emission is known to depend on the environment of a light source, and the enhancement of one-photon emission in a resonant cavity is known as the Purcell effect. Here we develop a theory of spontaneous two-photon emission for a general electromagnetic environment including inhomogeneous dispersive and absorptive media. This theory is used to evaluate the two-photon Purcell enhancement in the vicinity of metallic nanoparticles and it is demonstrated that the surface plasmon resonances supported by these particles can enhance the emission rate by more than two orders of magnitude. The control over two-photon Purcell enhancement given by tailored nanostructured environments could provide an emitter with any desired spectral response and may serve as an ultimate route for designing light sources with novel properties

    Microscopic model of Purcell enhancement in hyperbolic metamaterials

    Get PDF
    We study theoretically a dramatic enhancement of spontaneous emission in metamaterials with the hyperbolic dispersion modeled as a cubic lattice of anisotropic resonant dipoles. We analyze the dependence of the Purcell factor on the source position in the lattice unit cell and demonstrate that the optimal emitter position to achieve large Purcell factors and Lamb shifts are in the local field maxima. We show that the calculated Green function has a characteristic cross-like shape, spatially modulated due to structure discreteness. Our basic microscopic theory provides fundamental insights into the rapidly developing field of hyperbolic metamaterials.Comment: 9 pages, 11 figure

    The German turnover tax statistics panel

    Full text link

    Purcell effect in Hyperbolic Metamaterial Resonators

    Get PDF
    The radiation dynamics of optical emitters can be manipulated by properly designed material structures providing high local density of photonic states, a phenomenon often referred to as the Purcell effect. Plasmonic nanorod metamaterials with hyperbolic dispersion of electromagnetic modes are believed to deliver a significant Purcell enhancement with both broadband and non-resonant nature. Here, we have investigated finite-size cavities formed by nanorod metamaterials and shown that the main mechanism of the Purcell effect in these hyperbolic resonators originates from the cavity hyperbolic modes, which in a microscopic description stem from the interacting cylindrical surface plasmon modes of the finite number of nanorods forming the cavity. It is found that emitters polarized perpendicular to the nanorods exhibit strong decay rate enhancement, which is predominantly influenced by the rod length. We demonstrate that this enhancement originates from Fabry-Perot modes of the metamaterial cavity. The Purcell factors, delivered by those cavity modes, reach several hundred, which is 4-5 times larger than those emerging at the epsilon near zero transition frequencies. The effect of enhancement is less pronounced for dipoles, polarized along the rods. Furthermore, it was shown that the Purcell factor delivered by Fabry-Perot modes follows the dimension parameters of the array, while the decay rate in the epsilon near-zero regime is almost insensitive to geometry. The presented analysis shows a possibility to engineer emitter properties in the structured metamaterials, addressing their microscopic structure

    Brain charts for the human lifespan

    Get PDF
    Over the past few decades, neuroimaging has become a ubiquitous tool in basic research and clinical studies of the human brain. However, no reference standards currently exist to quantify individual diferences in neuroimaging metrics over time, in contrast to growth charts for anthropometric traits such as height and weight1 . Here we assemble an interactive open resource to benchmark brain morphology derived from any current or future sample of MRI data (http://www.brainchart.io/). With the goal of basing these reference charts on the largest and most inclusive dataset available, acknowledging limitations due to known biases of MRI studies relative to the diversity of the global population, we aggregated 123,984 MRI scans, across more than 100 primary studies, from 101,457 human participants between 115 days post-conception to 100 years of age. MRI metrics were quantifed by centile scores, relative to non-linear trajectories2 of brain structural changes, and rates of change, over the lifespan. Brain charts identifed previously unreported neurodevelo pmental milestones3 , showed high stability of individuals across longitudinal assessments, and demonstrated robustness to technical and methodological diferences between primary studies. Centile scores showed increased heritability compared with non-centiled MRI phenotypes, and provided a standardized measure of atypical brain structure that revealed patterns of neuroanatomical variation across neurological and psychiatric disorders. In summary, brain charts are an essential step towards robust quantifcation of individual variation benchmarked to normative trajectories in multiple, commonly used neuroimaging phenotypes

    Frustration - how it can be measured

    Full text link
    A misfit parameter is used to characterize the degree of frustration of ordered and disordered systems. It measures the increase of the ground-state energy due to frustration in comparison with that of a relevant reference state. The misfit parameter is calculated for various spin-glass models. It allows one to compare these models with each other. The extension of this concept to other combinatorial optimization problems with frustration, e.g. p-state Potts glasses, graph-partitioning problems and coloring problems is given.Comment: 10 pages, 1 table, no figures, uses revtex.st

    ETL-0254, Terrain analysis procedural guide for soil, February 1981

    Get PDF
    This report is one in a series of terrain analysis procedural guides being developed in support of the Topographic Support System (TSS). It was written specifically for a U.S. Army terrain analyst and presents the step-by- step methods needed for extraction, reducing, and recording soil information on a factor overlay and supporting data table. It is a contribution to the Department of Defense terrain intelligence effort. The report contains a detailed bibliography and a lengthy glossary

    ETL-0254, Terrain analysis procedural guide for soil, February 1981

    Get PDF
    This report is one in a series of terrain analysis procedural guides being developed in support of the Topographic Support System (TSS). It was written specifically for a U.S. Army terrain analyst and presents the step-by- step methods needed for extraction, reducing, and recording soil information on a factor overlay and supporting data table. It is a contribution to the Department of Defense terrain intelligence effort. The report contains a detailed bibliography and a lengthy glossary

    Vaccination Against Amyloidogenic Aggregates in Pancreatic Islets Prevents Development of Type 2 Diabetes Mellitus

    Get PDF
    Type 2 diabetes mellitus (T2DM) is a chronic progressive disease characterized by insulin resistance and insufficient insulin secretion to maintain normoglycemia. The majority of T2DM patients bear amyloid deposits mainly composed of islet amyloid polypeptide (IAPP) in their pancreatic islets. These-originally β-cell secretory products-extracellular aggregates are cytotoxic for insulin-producing β-cells and are associated with β-cell loss and inflammation in T2DM advanced stages. Due to the absence of T2DM preventive medicaments and the presence of only symptomatic drugs acting towards increasing hormone secretion and action, we aimed at establishing a novel disease-modifying therapy targeting the cytotoxic IAPP deposits in order to prevent the development of T2DM. We generated a vaccine based on virus-like particles (VLPs), devoid of genomic material, coupled to IAPP peptides inducing specific antibodies against aggregated, but not monomeric IAPP. Using a mouse model of islet amyloidosis, we demonstrate in vivo that our vaccine induced a potent antibody response against aggregated, but not soluble IAPP, strikingly preventing IAPP depositions, delaying onset of hyperglycemia and the induction of the associated pro-inflammatory cytokine Interleukin 1β (IL-1β). We offer the first cost-effective and safe disease-modifying approach targeting islet dysfunction in T2DM, preventing pathogenic aggregates without disturbing physiological IAPP function.These studies were funded by a project grant from the Swiss National Foundation (SNF). We acknowledge the technical assistance of Sydney W. Pence and Faith Slubowski at the Institute of Veterinary Physiology, University of Zürich. We appreciate the kind possibility given by Nanolive (Lausanne, Switzerland) for the opportunity and the collaborative acquisition of tomographic pictures.S
    corecore